512 research outputs found

    Mesopore etching under supercritical conditions – A shortcut to hierarchically porous silica monoliths

    Get PDF
    Hierarchically porous silica monoliths are obtained in the two-step Nakanishi process, where formation of a macro microporous silica gel is followed by widening micropores to mesopores through surface etching. The latter step is carried out through hydrothermal treatment of the gel in alkaline solution and necessitates a lengthy solvent exchange of the aqueous pore fluid before the ripened gel can be dried and calcined into a mechanically stable macro mesoporous monolith. We show that using an ethanol water (95.6/4.4, v/v) azeotrope as supercritical fluid for mesopore etching eliminates the solvent exchange, ripening, and drying steps of the classic route and delivers silica monoliths that can withstand fast heating rates for calcination. The proposed shortcut decreases the overall preparation time from ca. one week to ca. one day. Porosity data show that the alkaline conditions for mesopore etching are crucial to obtain crack-free samples with a narrow mesopore size distribution. Physical reconstruction of selected samples by confocal laser scanning microscopy and subsequent morphological analysis confirms that monoliths prepared via the proposed shortcut possess the high homogeneity of silica skeleton and macropore space that is desirable in adsorbents for flow-through applications

    Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    Get PDF
    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas' resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells

    Cell death sensitization of leukemia cells by opioid receptor activation

    Get PDF
    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies

    Immunohistochemical localization of fibronectin as a tool for the age determination of human skin wounds

    Get PDF
    We analyzed the distribution of fibronectin in routinely embedded tissue specimens from 53 skin wounds and 6 postmortem wounds. In postmortem wounds a faint but focal positive staining was exclusively found at the margin of the specimens which dit not extend into the adjacent stroma. Vital wounds were classified into 3 groups. The first comprising lesions with wound ages ranging from a few seconds to 30 min, the second comprising those with wound ages upt to 3 weeks, and the third group with lesions more than 3 weeks old. Ten out of 17 lesions with a wound age up to 30 min showed a clear positive reaction within the wound area. Three specimens in this group were completely negative, while in 4 additional cases the result was not significantly different from postmortem lesions. These 7 cases were characterized by acute death with extremely short survival times (only seconds). In wounds up to 3 weeks old fibronectin formed a distinct network containing an increasing number of inflammatory cells corresponding to the wound age. In 2 cases with a survival time of 17 days and in all wounds older than 3 weeks fibronectin was restricted to the surface of fibroblasts and to parallel arranged fibers in the granulation tissue without any network structures. We present evidence that fibronectin is a useful marker for vital wounds with a survival time of more than a few minutes. Fibronectin appears before neutrophilic granulocytes migrate into the wound area. Since a faint positive fibronectin staining is seen in postmortem lesions and bleedings, we propose that only those wounds which show strong positive fibronectin staining also extending into the adjacent stroma should be regarded as vital

    Ecdysteroid 7,9(11)-dien-6-ones as potential photoaffinity labels for ecdysteroid binding proteins

    Get PDF
    Three ecdysteroid 7,9(11)-dien-7-ones (dacryhainansterone, 25-hydroxydacryhainansterone and kaladasterone) were prepared by dehydration of the corresponding 11a-hydroxy ecdysteroids (ajugasterone C, turkesterone and muristerone A, respectively). The biological activities of the dienones in the Drosophila melanogaster B(II) cell bioassay, which reflect the affinity for the ecdysteroid receptor complex, showed that the dienones retain high biological activity. Irradiation at 350 nm of the ecdysteroid dienones (100 nM) with bacterially-expressed dipteran and lepidopteran ecdysteroid receptor proteins (DmEcR/DmUSP or CfEcR/CfUSP), followed by loading with [(3)H]ponasterone A revealed that irradiation of dacryhainansterone or kaladasterone resulted in blocking of >70% of the specific binding sites. Thus, ecdysteroid dienones show considerable potential as photoaffinity analogues for ecdysteroid binding proteins

    Targeted treatment options for paediatric B-cell precursor acute lymphoblastic leukaemia patients with constitutional or somatic chromosome 21 alterations

    Get PDF
    \ua9 2024 The AuthorsBackground: Chromosome 21 is affected in ∼60% of paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) patients and includes somatic and constitutional gains, intrachromosomal amplification of chromosome 21 (iAMP21), and the translocation t(12;21) resulting in the ETV6::RUNX1 gene fusion. Methods: Since these numeric and structural chromosome 21 alterations are not targetable, we studied the type and frequency of yet-proven targetable events co-occurring with chromosome 21 alterations. Results: Among 307 primary paediatric BCP-ALL cases, JAK/STAT pathway lesions were most frequent in patients with constitutional gain of chromosome 21 (Down syndrome ALL; 35/71, 49%) and iAMP21 (9/22, 41%). RAS pathway lesions were most frequent in high hyperdiploidy (62/108, 57%) and FLT3 lesions were most frequent in iAMP21 (7/22, 32%). Virtually all cases expressed CD19 and CD22 at the cell surface. Positivity for CD20 surface expression ranged from 67% in iAMP21 (8/12) to 20% in ETV6::RUNX1 (26/129). Conclusion: Activated JAK/STAT, RAS or FLT3 signalling, and CD marker surface expression may provide targetable treatment options for the majority of chromosome 21-altered BCP-ALL cases

    Study of Z boson production in pPb collisions at √sNN = 5.02 TeV

    Get PDF
    © 2016 The Author.The production of Z bosons in pPb collisions at sNN=5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore