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Abstract. Before isogeometric analysis can be applied to solving a par-
tial differential equation posed over some physical domain, one needs
to construct a valid parametrization of the geometry. The accuracy of
the analysis is affected by the quality of the parametrization. The chal-
lenge of computing and maintaining a valid geometry parametrization
is particularly relevant in applications of isogemetric analysis to shape
optimization, where the geometry varies from one optimization iteration
to another. We propose a general framework for handling the geometry
parametrization in isogeometric analysis and shape optimization. It uti-
lizes an expensive non-linear method for constructing/updating a high
quality reference parametrization, and an inexpensive linear method for
maintaining the parametrization in the vicinity of the reference one. We
describe several linear and non-linear parametrization methods, which
are suitable for our framework. The non-linear methods we consider are
based on solving a constrained optimization problem numerically, and
are divided into two classes, geometry-oriented methods and analysis-
oriented methods. Their performance is illustrated through a few nu-
merical examples.

Keywords: Isogeometric analysis, shape optimization, parametrization

1 Introduction

Isogeometric analysis is a modern computational method for solving partial dif-
ferential equations (PDEs), which is based on a successful symbiosis between
the variational techniques utilized in isoparametric finite element analysis with
the geometric modelling tools from computer aided design [14, 4]. A key ingredi-
ent of isogeometric analysis is the parametrization of the physical domain over
which the PDE is posed, in many ways analogous to mesh generation in stan-
dard finite element analysis. Just as mesh quality affects the accuracy of a finite
element approximation, the quality of the parametrization affects the accuracy
of isogeometric analysis, see [21, 2, 34, 35].
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The question of computing and maintaining a valid geometry parametrization
is particularly relevant in applications of isogemetric analysis to shape optimiza-
tion problems, see e.g. [11, 22, 23, 26]. Every time the geometry changes, that
is, at every shape optimization iteration, one needs to update the parametriza-
tion in order to maintain the accuracy of the numerical approximation to the
PDEs, governing the underlying physical model of the system. The algorithm
for parametrization updates should therefore be (a) computationally inexpen-
sive, as it is executed often; and (b) differentiable with respect to the variables
determining the shape of the domain, which allows one to advantageously uti-
lize gradient-based optimization algorithms thus reducing the total number of
optimization iterations when compared with non-smooth or zero-order methods.
One may again draw a parallel with the shape optimization based on the regular
finite element analysis, which involves updating the mesh in between the shape
optimization iterations.

The approach based on the discrete Coons patch [6] is a popular way of
generating candidate parametrizations. This method is explicit and as a result
it is very computationally inexpensive. Unfortunately, the resulting map needs
not to be injective, and it is often necessary to invest further work in order to
obtain even a valid, that is, a bijective parametrization. Even more work may be
required to improve the quality of such a parametrization. Another approach to
the same problem, which we have often utilized, is based on the spring model, cf.
Section 3.1, in which the edges in the control net are modelled as elastic springs.
In order to find a candidate parametrization one is required to solve a system
of linear algebraic equations, thus rendering the method slightly more expensive
than the discrete Coons patch. In our experience, however, the quality of the
parametrizations obtained with this approach is slightly better.

If a good parametrization of a domain with a similar shape and patch lay-
out is known, e.g., by using one of the methods in Section 4, one may employ
one of the many methods developed for mesh generation [9, 10, 29] in order to
compute a domain parametrization. We will in particular consider mean value
coordinates [8, 13], cf. Section 3.2. A new linear method of the same type is a
quasi-conformal deformation method, cf. Section 3.3, which is inspired by con-
formal maps. Finally, any non-linear method may be linearized in the vicinity of
a reference parametrization thereby resulting in a linear method.

We believe that no single linear method is capable of producing a high quality
parametrization in all geometric configurations, and therefore we mainly inves-
tigate some non-linear methods. Many existing methods rely on the theory of
harmonic functions on the physical domain. The method in [20] works on a tri-
angulated volume and starts by constructing a parametrization of the boundary,
i.e., the outer surface, using two harmonic functions with near orthogonal gra-
dients. Then using harmonic functions in 3D the parametrization is propagated
inwards to fill the entire volume. In [24] the inverse of the parametrization is
constructed in a coordinate by coordinate fashion, using harmonic functions on
the level set of the previously constructed coordinate functions. Finally the par-
ametrization is defined as a tensor product spline approximation of the inverse
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map. The method in [25] demands that the inverse of the parametrization of a
planar domain is a pair of harmonic functions and then proceeds to solving a
uniquely solvable non-linear equation. This is mathematically equivalent to the
last method in Section 4.1, where the Winslow functional is minimized. There is
a unique minimizer whose inverse is the same pair of harmonic functions. The
Winslow functional can also be interpreted as a condition number for the Jaco-
bian and it is in that role that it is used in [12]. One may of course devise other
methods based on the idea of finding extrema of geometric functionals, quantita-
tively assessing the quality of the parametrization, such as the area orthogonality
functional and the Liao functional, cf. Section 4.1.

The final class of methods is based on estimating the approximation error
and generating a parametrization that makes the estimate as small as possible.
As test cases one can take problems with known analytical solutions and try to
find the parametrization that minimizes the discrepancy between the exact and
the numerical solutions, see [21, 34] for a 1D eigenvalue problem and a 2D heat
conduction problem, respectively. In practice one of course does not know the
exact solution so instead a suitable error estimator is utilized. In Section 4.2 we
try three different error estimators, where the first one is similar to the one used
in [35].

The outline of the rest of this paper is as follows. In Section 2 we introduce
the parametrization problem studied in this work, including the partial differen-
tial equation to be solved, namely Poisson’s equation. In Section 3, we introduce
three linear parametrization methods, and in Section 4, we describe a family of
nonlinear, optimization-based parametrization methods based on two classes of
quality measures, namely purely geometric and analysis-oriented measures. In
Section 5, numerical results are presented, and in Section 6 we discuss exten-
sions of the methods to shape optimization and to multiple patches. Finally, the
current findings and some future challenges are summarized in Section 7.

2 Parametrization for Partial Differential Equations

In the following, we introduce the context in which the parametrization problem
occurs, we formulate the parametrization problem, and we state a condition for
the validity of a B-spline parametrization.

2.1 The Setting: Poisson’s Problem

We consider a mixed boundary value problem for Poission’s equation in two
dimensions in a regular domain Ω ⊂ R2 with piecewise-smooth boundary ∂Ω.
The boundary ∂Ω is represented as a closure of the union of two open disjoint
subsets ΓD 6= ∅ and ΓN , on which we impose Dirichlet and Neumann boundary
conditions. That is, we are interested in finding a function u : R2 → R, such that
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−∆u = f in Ω , (1a)

u = g on ΓD , (1b)

∇u · n = h on ΓN , (1c)

where f, g, h : R2 → R are given, and n is the outwards facing boundary normal.
In the weak form, the boundary value problem (1) reads: Find u ∈ {w ∈ H1(Ω) :
w|ΓD

= g } such that∫
Ω

∇u · ∇v dA =

∫
Ω

f v dA+

∫
ΓN

h v ds . (2)

for all v ∈ {w ∈ H1(Ω) : w|ΓD
= 0 }.

2.2 The Challenge: Parametrize the Interior

In order to utilize isogeometric analysis for solving the boundary value prob-
lem (1) numerically, a suitable geometry parametrization X of the domain Ω is
required. Constructing such a parametrization is akin to the mesh generation
step required for the standard finite element analysis. The parametrization im-
pacts the accuracy of the numerical solution to the problem [34]. Expectedly, a
higher quality parametrization allows for numerical solution with higher accu-
racy, all other things being equal.

Assuming that the domain Ω ⊂ R2 may be parametrized using a single patch,
the challenge in two dimensions reads: given a parametrization Y : ∂[0, 1]2 → R2

of the boundary ∂Ω, construct a parametrization of the interior X : [0, 1]2 → R2,
such that X|∂[0,1]2 = Y.

In B-spline-based isogeometric analysis, the maps Y and X are splines, e.g.,

X(ξ, η) =

(
x(ξ, η)
y(ξ, η)

)
=
∑
i,j

Xi,jMi(ξ)Nj(η) , (3)

where Mi and Nj are B-splines defined by polynomial degrees and knots vectors
and Xi,j are the control points. The equivalent challenge is now to specify the
interior control points given the boundary control points [34, 2, 11]. This problem
is sketched in Fig. 1.

2.3 The Jacobian

As we assume the boundary map Y = X|∂[0,1]2 is a parametrization, in particular

a homeomorphism, the map X : [0, 1]2 → Ω is a diffeomorphism if and only if
the Jacobian

J =
(
Xξ Xη

)
=
(
∂X
∂ξ

∂X
∂η

)
=

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
=

(
xξ xη
yξ yη

)
. (4)
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?

Fig. 1. Challenge: How do we go from a parametrization of the boundary of a domain
to a parametrization that includes the interior of the domain?

is regular at every point. Therefore, in order to guarantee the validity of the
parametrization, it is necessary that the determinant of the Jacobian does not
vanish on Ω. At the four corners of the parameter domain [0, 1]2, both partial
derivatives of X are determined by the boundary parametrization Y. As a con-
sequence of this, there are domains which are impossible to parametrize. Indeed,
consider the V-shaped domain in Fig. 2. If the boundary parametrization is reg-

+

+ +

−

a b

Fig. 2. An impossible domain. a: Control points and sign of the Jacobian determinant
in the corners. b: The best quadratic parametrization when the edges are parametrized
affinely.

ular, then the Jacobian has a positive determinant in the three convex corners,
and a negative determinant in the concave corner (or vice versa if the orienta-
tion is reversed). So if the parametrization is C1 on the closed parameter domain
[0, 1]2, the determinant of the Jacobian attains both positive and negative values,
and it is impossible to have a valid parametrization for this domain.

If we use B-splines to define the parametrization as in Equation (3), then the
determinant can be written as

detJ =
∑
i,j,k,`

det

(
xi,j xk,`
yi,j yk,`

)
M ′i(ξ)Nj(η)Mk(ξ)N ′`(η) . (5)
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If M and N are B-splines of degree p and q, respectively, this is clearly a piecewise
polynomial map of degree 2p − 1 in ξ and of degree 2q − 1 in η. As a result, it
can be expressed in terms of B-splines M̃i and Ñj of degree 2p − 1 and 2q − 1,
respectively, which are defined on the same knot vectors as Mi and Nj with
multiplicities raised by p and q for interior knots and by p − 1 and q − 1 for
the boundary knots. If rational NURBS are used, then we have a similar result,
but the degree of M̃i and Ñj is now 3p and 3q, respectively. In any case, we can
write

detJ =
∑
i,j

di,j M̃i(ξ) Ñj(η) . (6)

As the B-splines M̃i and Ñj are non negative, we immediately obtain

Theorem 1. If the coefficients di,j of the B-spline expansion (6) of the deter-
minant of the Jacobian are positive then the parametrization is valid.

Observe that this is a sufficient condition and not a necessary one. However, if
we perform knot insertion, then more and more coefficients will become positive.
Indeed, if detJ > 0 on all of [0, 1]2, then di,j > 0 for all i, j, after sufficiently
many knot insertions. On the other hand, if the boundary parametrization has
a zero derivative at some point, then the B-spline expansion (6) may have a
negative coefficient no matter how many knot insertions we perform.

To demonstrate this, consider again the V-shaped domain, but now assume
that the boundary parametrization is quadratic and has a zero derivative at
the concave corner P1, see Fig. 3. That is, the two edges meeting at P1 are

P3

P2 P4

P1

a

+

+ +

0

b c

Fig. 3. The V-shaped domain with a singular boundary parametrization. a: Three
control points are placed at the concave corner. b: The parametrization and the sign
of the Jacobian determinant at the four corners. c: The Jacobian determinant.

parametrized as

(1− ξ2)P1 + ξ2 P2 and (1− η2)P1 + η2 P4 , (7)

respectively. By letting the single inner control point be 1
4P1 + 3

4P3 we obtain a
valid parametrization in the form of a bi-quadratic tensor product Bézier patch.
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We may assume that P1 = 0 and then

X(ξ, η) = P2B
2
2(ξ)B2

0(η) +
3

4
P3B

2
1(ξ)B2

1(η) + P4B
2
0(ξ)B2

2(η)

+
P2 + P3

2
B2

2(ξ)B2
1(η) +

P3 + P4

2
B2

1(ξ)B2
2(η) + P3B

2
2(ξ)B2

2(η) . (8)

The determinant of the Jacobian is a bi-cubic tensor product Bézier patch

detJ =

3∑
i,j=0

di,j B
3
i (ξ)B3

j (η) . (9)

We see that d0,0 = d1,0 = d0,1 = 0, and d1,1 = det(P2, P4) < 0 but it is not
hard to see that detJ > 0 on ]0, 1[2, see Fig. 3. This is still the case after any
refinement of the knot vectors.

The fact that a change of the boundary parametrization of the V-shaped
domain can make a parametrization of the interior possible was also noted in
[32].

3 Linear Parametrization Methods

In this section, we present three linear methods for computing geometry par-
ametrizations. The first of these, the spring model, operates without the need
for any information apart from the boundary parametrization; this method may
therefore be utilized for generating initial parametrizations for other linear or
non-linear methods. The last two, the mean value coordinates and the quasi-
conformal methods, rely on the knowledge of a reference parametrization of the
interior. One may of course generate more linear methods by linearizing nonlin-
ear ones around reference parametrizations, as discussed in Section 3.4.

3.1 The Spring Model

This method mimics a mechanical model, in which all edges in the control mesh
are replaced with linear elastic springs. The mechanical equilibrium, which arises
when the positions of the boundary control points are given, defines the position
of the inner control points within this model. In this configuration, all inner
control points are the averages of their four neighbours. That is, we have a set
of simple linear equations:

4Xi,j = Xi+1,j + Xi−1,j + Xi,j+1 + Xi,j−1 , (10)

which is easily solved. By assigning different “spring constants” to different edges
one obtains variations of the method.
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3.2 Mean Value Coordinates

In recent years there has been a lot of work on parametrization of polygonal
meshes [9, 10, 29]. If we use the control point formulation of our spline param-
etrization problem, some of these methods can be applied to our problem. A
popular and appealing method is based on the mean value coordinates [8, 13].
Here, points in the plane are given as a particular affine combination of the ver-
tices of a closed polygon. The closed polygon is in our case the boundary of the
control net.

Suppose we are given a reference parametrization, with inner control points
X̂k,`, and a set of boundary control points X̂i, i = 1, . . . , n, arranged in a counter
clockwise fashion. Any point x ∈ R2 can now be written as an affine combination
of the boundary control points:

x =

n∑
i=1

λi(x) X̂i , where λi(x) =
wi(x)∑n
i=1 wi(x)

. (11)

The weights wi(x) are defined by

wi(x) = 2
tan(αi−1/2) + tan(αi/2)

‖v̂i‖
=

2

‖v̂i‖

(
sinαi−1

1 + cosαi−1
+

sinαi
1 + cosαi

)
=

2

‖v̂i‖

(
[v̂i−1, v̂i]

‖v̂i−1‖‖v̂i‖+ 〈v̂i−1, v̂i〉
+

[v̂i, v̂i+1]

‖v̂i‖‖v̂i+1‖+ 〈v̂i, v̂i+1〉

)
, (12)

where

〈v̂, ŵ〉 = v1w1 + v2w2 and [v̂, ŵ] = v1w2 − v2w1 (13)

are the inner product and the determinant of a pair of vectors v̂ and ŵ, respec-
tively. The angles and vectors are defined in Fig. 4a. If we have a parametrization

a

x

X̂i−1

X̂i

X̂i+1

v̂i−1

v̂i

v̂i+1

αi−1

αi

b

v̂

ŵ

θ

Fig. 4. a: Ingredients of mean value coordinates. b: Ingredients of the quasi conformal
deformation.

of the boundary of another domain with new boundary control points Xi, then
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we simply define the new inner control points as

Xk,` =

n∑
i=1

λi(X̂k,`)Xi , (14)

i.e., we use the same normalized weights as in the reference control net.

3.3 Quasi Conformal Deformation

Once again we assume we have a reference parametrization X̂. The idea is that
we would like any other parametrization to have a control net that locally looks
like a conformal deformation of the reference control net.

Consider a quadrilateral and two neighbouring edges in the reference control
net, cf. Fig. 4b. We think of these edges as vectors v̂ and ŵ emanating from their
common vertex. The method is based on a simple geometric identity ‖v̂‖ŵ =
‖ŵ‖R(θ) v̂, where R(θ) is a rotation through the angle θ, that is:

‖v̂‖ ŵ = ‖ŵ‖R(θ) v̂ =
1

‖v̂‖

(
〈v̂, ŵ〉 −[v̂, ŵ]
[v̂, ŵ] 〈v̂, ŵ〉

)
v̂ . (15)

If v and w are the corresponding edges in the new control net, then we can
require that

‖v̂‖w =
1

‖v̂‖

(
〈v̂, ŵ〉 −[v̂, ŵ]
[v̂, ŵ] 〈v̂, ŵ〉

)
v , (16)

for each such pair of edges. For each inner control point we have four linear alge-
braic equations of the type (16), and for every boundary control point, apart from
the corners, we have two equations. This results in 4(MN −M −N) equations
in (M − 2)(N − 2) unknown inner control points. The resulting overdetermined
system is then solved in the least squares sense.

One could also look after a conformal deformation of the reference param-
etrization by replacing the vectors v̂ and ŵ with the partial derivatives X̂ξ and

X̂η. That is, the new parametrization X should satisfy the equation

‖X̂ξ‖Xη =
1

‖X̂ξ‖

(
〈X̂ξ, X̂η〉 −[X̂ξ, X̂η]

[X̂ξ, X̂η] 〈X̂ξ, X̂η〉

)
Xξ , in all of [0, 1]2 . (17)

Similarly to the previous case, this family of equations could be solved in the
least square sense.

3.4 Linearized methods

In the following section we will introduce several non-linear methods that work
by minimizing a certain quality measure c, and by a linearization of these, we
may obtain new linear methods. One way of formalizing this is by considering a
second order Taylor expansion of the quality measure in the vicinity of a reference
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parametrization X̂. If we let X1 denote the known control points, typically the
boundary control points, and let X2 denote unknown control points, typically
the inner control points, then we can write

c(X) ≈ c(X̂) +
(
G1(X̂) G2(X̂)

)(X1 − X̂1

X2 − X̂2

)

+
1

2

(
XT

1 − X̂T
1 XT

2 − X̂T
2

)(H11(X̂) H12(X̂)

H21(X̂) H22(X̂)

)(
X1 − X̂1

X2 − X̂2

)
, (18)

where Gi and Hij gives the gradient and the Hessian of c with respect to the
control points of the parametrization. Assuming that the Hessian is positive
definite, the right hand side is minimized when

H22(X̂)X2 = H22(X̂) X̂2 − 2H21(X̂) (X1 − X̂1)−G2(X̂) , (19)

which is a linear equation in the unknown control points X2.

4 Nonlinear Parametrization Methods

We proceed to presenting a family of nonlinear parametrization methods based
on optimization, following the approach taken in, e.g. [34, 35]. Thus, the interior
parametrization is constructed by numerically maximizing quantitative measures
of the parametrization quality. We divide these measure into two groups: the
geometry-oriented and the analysis-oriented. Throughout, we assume that we
are given a regular parametrization of the boundary with positive determinant
of the Jacobian in the corners.

In order to have a valid parametrization, the Jacobian needs to have a non-
vanishing determinant everywhere. Owing to our assumption about the sign in
the corners, we will demand that the determinant is positive everywhere inside
the domain, and we can then formulate the following max min problem

maximize
X

Z , (20a)

such that detJ ≥ Z , in [0, 1]2 , (20b)

where X|∂[0,1]2 = Y , (20c)

In practice, we replace the condition (20b) with

di,j ≥ Z , for all i, j , (21)

where di,j are the coefficients of the determinant of the Jacobian, cf. (6). In
case an optimization algorithm terminates with a configuration, for which we
have Z > 0, the resulting parametrization is necessarily valid. However, its
quality does not have to be very high, cf. Fig. 5. Despite this drawback, the
approach provides a simple way of generating valid initial parametrizations for
other methods, which require such initialization.
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Fig. 5. Maximizing the smallest coefficient in the B-spline expansion of detJ.

4.1 Geometric Measures

The first class of quality measures are geometric in nature, and thereby depend
only on the parametrization itself. The methods in this class amount to solving
an optimization problem, which can be formulated as

minimize
X

c(X) , (22a)

such that detJ ≥ δ Z , in [0, 1]2 , (22b)

where X|∂[0,1]2 = Y , (22c)

In the lower bound (22b) for detJ, the number δ ∈ [0, 1] is an algorithmic
parameter and the number Z is the result of the optimization (20). We have
often successfully used δ = 0.

When defining geometric quality measures for a parametrization, the Jaco-
bian J and the first fundamental form g are important quantities:

g = JTJ =

[
x2ξ + y2ξ xξxη + yξyη

xξxη + yξyη x2η + y2η

]
. (23)

With these in mind, we proceed to define the area-orthogonality, the Liao, and
the Winslow functionals, which are all well-known quantities for mesh genera-
tions, see e.g. [17, 7].

The Area-Orthogonality Functional The area-orthogonality measure mAO

is defined as the product of the diagonal entries of the metric tensor g, [7, 15]

mAO = g11g22 =
(
x2ξ + y2ξ

)(
x2η + y2η

)
. (24)

Based on this, we may define the area-orthogonality functional cAO as the inte-
gral of the area-orthogonality measure mAO over the parameter domain:

cAO =

∫ 1

0

∫ 1

0

mAO dξ dη . (25)
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The Liao Functional The Liao measure mL is defined as the Frobenius norm
of the metric tensor g, i.e., the sum of the square of its entries [18, 17, 7, 15]:

mL = g211 + g222 + 2g212 =
(
x2ξ + y2ξ

)2
+
(
x2η + y2η

)2
+ 2
(
xξxη + yξyη

)2
. (26)

As above, we may define the Liao functional as

cL =

∫ 1

0

∫ 1

0

mL dξ dη . (27)

The Winslow Functional In this approach, the goal is to construct a param-
etrization as conformal as possible [33, 11, 22].

The parametrization X is conformal if and only if the Jacobian J is the
product of a scaling and a rotation, or, equivalently, if the first fundamental
form g is diagonal with identical diagonal elements. If we let λ1 and λ2 denote
the eigenvalues of g, we need λ1 = λ2 to have conformality. We easily find that(√

λ1 −
√
λ2
)2

√
λ1λ2

=
λ1 + λ2 − 2

√
λ1λ2√

λ1λ2
=
λ1 + λ2√
λ1λ2

− 2 .

From this, we may define the Winslow measure mW :

mW =
λ1 + λ2√
λ1λ2

=
tr(g)√
det(g)

=
x2ξ + x2η + y2ξ + y2η
xξyη − yξxη

, (28)

where
√

det(g) = det(J). As such, mW is a pointwise measure of conformality.
Using the Winslow function mW we define the Winslow functional as:

cW =

∫ 1

0

∫ 1

0

mW dξ dη , (29)

and use this as a global measure of conformality.
The Winslow functional has particularly nice mathematical properties. In-

deed, if we switch the integration in (29) from the parameter domain [0, 1]2 to
the physical domain Ω, then we obtain

cW =

∫
Ω

((
∂ξ

∂x

)2

+

(
∂ξ

∂y

)2

+

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)

dA . (30)

This is the well known Dirichlet energy, and the unique minimizer is a pair of
harmonic functions Ω → [0, 1]2 whose restriction to the boundary is the inverse
Y−1 of the given boundary parametrization Y : ∂[0, 1]2 → ∂Ω. As the target
[0, 1]2 is convex, the Radó–Kneser–Choquet theorem [1, 5, 16, 28] ensures that
this pair of harmonic functions is a diffeomorphism on the interior. This means
that our optimization problem (22), with the cost function (29), also has a
unique minimum which is a diffeomorphism whose inverse is a pair of harmonic
functions. This is not in conflict with the impossible domain shown in Fig. 2: the
diffeomorphism is defined on the interior, and the maps may be non-differentiable
at the boundary. In Fig. 6 we show the parametrization ensured by the theorem.
Notice that the y coordinate is not differentiable in the concave corner, so the
Jacobian is not defined in that corner.
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Fig. 6. Parametrization of the V-shape and the graphs of the x and y coordinates.

4.2 Analysis-Oriented Measures

In the other class of non-linear variational methods for constructing parametri-
zations, we put analysis-oriented methods. Here, the explicit goal is to construct
as accurate analysis of a given partial differential equation as possible. This accu-
racy needs to be estimated, which can be done by comparing the solutions from
several analyses or by evaluating the residual. In any case, when using meth-
ods in this class we aim at analysis-aware parametrizations [34, 2]. The quality
measure for these methods depends not only on the parametrization, but also
on the solution to the PDE at hand (the Poisson problem (1) in our case). The
resulting optimization problems can be formulated as follows:

minimize
X

c(X, u) , (31a)

such that detJ ≥ δ Z , in [0, 1]2 , (31b)

where X|∂[0,1]2 = Y , (31c)

−∆u = f , in Ω , (31d)

u = g , on ΓD , (31e)

∇u · n = h , on ΓN . (31f)

As before, in the lower bound (31b) for detJ, the number δ ∈ [0, 1] is an algo-
rithmic parameter and the number Z is the result of the optimization (20). It
goes without saying that if the Poisson problem is replaced by another problem,
only the equations (31d)–(31f) are changed.

Strong Residual Norm. In this approach, we use the residual of the problem
we are trying to solve as an error estimator. Hence, from Equation (31d) we set

mSR = (∆u+ f)2 . (32)

We emphasize that at least a quadratic B-spline approximation of the field u
must be employed. The exact expression for mSR depends of course on the
problem considered. As a result, we obtain the quality measure

cSR =

∫
Ω

mSR dA . (33)
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We could also consider the Neumann boundary condition (31f), which is only
weakly satisfied, and add a term like α

∫
ΓN

(∇u ·n− h)2 ds to the cost function,
where α is some weight factor.

Weak Residual Norm. Here, we again consider the residual, but instead of
integrating it over the entire domain to get a global error estimator, we now
project it onto a suitable space of test functions to obtain a set of local error
estimators.

When the variational form of the PDE (2) is considered over a given space
S1, the residual will belong to the orthogonal complement of this space owing to
Galerkin’s orthogonality. Therefore, we project the residual onto a larger space
S2 % S1 to obtain a meaningful, non-zero error estimator:

mWR,k =

∫
Ω

∇u · ∇Rk dA−
∫
ΓN

g Rk ds−
∫
Ω

f Rk dA . (34)

Here, the functions Rk are the basis functions for S2 stemming from tensor
product B-splines on the parameter domain [0, 1]2. There are many possibilities
in choosing S2. One obvious choice is by halving all knot segments (h-refinement),
and another is degree elevation (p-refinement). As the integration is performed
knot segment by knot segment the latter yields cheaper integration, so this is
the one we have tested. Again, the exact expression for mWR depends on the
problem considered.

In this method, we consider the quality measure

cWR =
∑
k

m2
WR,k . (35)

Of course, we could also introduce weights αk on mWR,k, e.g. the area of the
support of the basis function Rk.

Enrichment Error Norm. As in the previous subsection we consider two
different spline spaces S1 $ S2, but now we seek two approximate solutions
u1 ∈ S1 and u2 ∈ S2 and regard their difference as an error estimator:

u1 − u2 =
∑
k

mEE,k Rk, (36)

where the Rk as above is the basis for S2. Therefore, the quality measure is

cEE =
∑
k

m2
EE,k , (37)

and again, we could introduce weights αk on mEE,k. Note that we have to solve
the equation twice in this approach, so it is a rather expensive method.
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5 Numerical Examples

In this section, we study two numerical examples of the parametrization problem
outlined in Section 2, and we compare the resulting parametrizations based on
the nonlinear methods described in Section 4. The methods are implemented
in MATLAB R© [19] and Octave [27]. The optimization is done using IPOPT, a
non-linear optimization package based on an interior point method [30]. In both
examples, the geometries are represented by quadratic splines, while the scalar
field u is approximated using cubic splines. The equations are discretized using
a Galerkin method as described in [4] and the knots are in all cases uniformly
spaced. The weak residual and enrichment error methods are based on a degree
elevation of the analysis spline by one, i.e., the spline spaces S1 and S2 consists
of cubic and quartic C2 splines, respectively.

5.1 Poisson’s Equation on a Wedge-Shaped Domain

We consider the parametrization problem for a boundary value problem (BVP)
with a known analytical solution. The example is taken from [34]. The domain
under consideration is Ω = {(x, y) | − 1 ≤ y ≤ x2, 0 ≤ x ≤ 1}, and we impose
homogeneous boundary conditions u = 0 on the entire boundary ∂Ω, as depicted
in Fig. 7a. The field u∗ = sin(π(y − x2)) sin(πx) sin(πy) obviously fulfills the

a b c

f

u = 0

u
=

0

u
=

0

u
=

0

Fig. 7. Wedge-shaped domain. a: Domain and boundary conditions. b: Analytical so-
lution of the boundary value problem. c: Boundary control points.

boundary conditions, and therefore is the unique solution to the BVP corre-
sponding to f = −∆u∗. This solution is shown in Fig. 7b, and the control points
of the boundary are depicted in Fig. 7c.

We solve the parametrization problem for this BVP by optimizing the lo-
cation of the 12 interior control points, yielding a total of 24 design variables
for the optimization. We initialize all methods using the spring model in Sec-
tion 3.1. Fig. 8 depicts, for each of the six parametrization methods, the optimal
control net, the corresponding parametrization, and the numerical error, com-
puted as the difference |uh − u∗| between the computed solutions uh and the
analytical solution u∗. The depicted error is based on a discretization of the
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Fig. 8. Wedge-shaped domain: Isoparametric lines and numerical error (left) and con-
trol net (right) for the parametrization based on area-orthogonality (a), Liao (b),
Winslow (c), strong residual (d), weak residual (e), and enrichment error (f).

state variable u with ∼ 104 degrees-of-freedom, while the optimization for the
analysis-oriented methods are performed on a coarser discretization of u with
∼ 103 degrees-of-freedom. We note that the optimal control net and the cor-
responding parametrizations are quite similar for the Liao, the Winslow, the
strong residual, and the weak residual methods, whereas the area-orthogonality,
and the enriched error methods differ somewhat. This is also clearly reflected
in the error, which is found to vary by several orders of magnitude between the
methods.

An interesting question is, how well these parametrizations reproduce the
analytical solution when we refine the analysis. The answer to this is shown in
Fig. 9. The figure depicts the global numerical error ε as a function of the number
of basis functions used to approximate the solution to the PDE for each of the six
methods. As global numerical error, we use the L2-norm of the local numerical
error: ε2 =

∫
Ω
|uh − u∗|2 dA. Note that for each method, the parametrization

is kept fixed during these experiments. For not too coarse discretizations, we
see that the error varies by several orders of magnitude between the methods,
clearly emphasizing the importance of the way the domain is parametrized. The
smallest error is found for the weak residual method, while the highest error
is found for the area-orthogonality method. Additionally, for this example the
error for the weak residual method converges faster than for the other methods,
which have practically identical convergence orders.

We conclude this example by emphasizing that the computational expenses
vary significantly between the two classes of methods. The geometrically based
methods (area-orthogonality, Liao, and Winslow) converged within ∼ 30 op-
timization iterations, whereas the analysis-oriented methods (strong residual,
weak residual, and enrichment error) converged after ∼ 300 iterations. Even
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Fig. 9. Wedge-shaped domain: error as a function of number of degrees-of-freedom for
the different parametrization methods.

more importantly, the analysis-oriented methods require solving the PDE in
each optimization step, unlike the geometrical methods.

5.2 Poisson’s Equation on a Jigsaw puzzle

We consider the Poisson problem (1) posed over the jigsaw puzzle piece shown
in Fig. 10a. We use the field

u∗G =

2∑
i=1

exp

(
− (x− x̃i)2

a2i
− (y − ỹi)2

b2i

)
(38)

as boundary condition on ∂Ω with given parameters x̃, ỹ,a,b ∈ R2, and with
f = −∆u∗G, u∗G is the unique solution to the BVP. The field is depicted in
Fig. 10b. The boundary conditions are enforced strongly through the least square
fit of the traces in the trial space to the field (38). The boundary control points
are shown in Fig. 10c.

a b c

f

u = u∗

u = u∗

u
=

u
∗

u
=

u
∗

Fig. 10. Jigsaw puzzle. a: Domain and boundary conditions. b: Analytical solution of
the boundary value problem. c: Boundary control points.

We solve the parametrization problem using all six nonlinear methods by
optimizing the position of the 64 interior control points, giving us a total of 128
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Fig. 11. Jigsaw puzzle piece: Isoparametric lines and numerical error (top) and con-
trol net (bottom) for the parametrization based on area-orthogonality (a), Liao (b),
Winslow (c), strong residual (d), weak residual (e), and enrichment error (f).

design variables. In this example, we initialize the geometric methods from the
spring model in Section 3.1, and the analysis-oriented methods from the Winslow
method. The results are shown in Fig. 11, depicting the optimal control net, the
corresponding parametrization, and the numerical error. We note firstly that
all the optimized control net and their corresponding parametrizations show a
high degree of symmetry, as one would expect from the underlying BVP. The
parametrizations vary markedly between the methods, and so does the error size
and distribution. To examine the numerical error more closely, we compare again
the methods in terms of the L2-norm of the error when the analysis is refined.
This is shown in Fig. 12, displaying the global numerical error ε as a function of
the number of degrees-of-freedom for the analysis for each of the six methods. We
note that for sufficiently fine discretizations, the global error convergence order
is the same for all methods. The superconvergence of the weak residual method
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Fig. 12. Jigsaw puzzle: error as a function of number of degrees-of-freedom for the
different parametrization methods.

observed in the previous example in Fig. 8 is no longer seen. The difference in
the global error varies by approximately one order of magnitude between the
methods. Again, the weak residual method yields the lowest error, while the
area-orthogonality gives the highest.

In terms of computational expenses, the geometry-oriented methods con-
verged again significantly faster than the analysis-oriented methods. And as
each geometric iteration is significantly cheaper than a corresponding analysis-
oriented iteration, the computational time is orders of magnitude smaller for the
geometric methods than the analysis-oriented ones.

6 Discussion

The solution to the parametrization problem is particularly important in the
context of shape optimization, where a parametrization needs to be recomputed
repeatedly as the shape of the physical domain is updated by the shape opti-
mization algorithm, cf. [31]. In addition, most realistic industrial problems can
only be realized based on multiple patches, and the problems are most often
three-dimensional and not planar. In the present section, we further discuss
these challenges.

6.1 Shape Optimization

The authors are especially interested in using IGA for shape optimization, which
imposes further requirements on the parametrization method. In addition to pro-
ducing a valid parametrization of high quality, they have to be computationally
inexpensive and robust. Last but not the least, they should produce parametri-
zations, which depend in a differentiable way on the parameters, determining
the shape of the domain. For this purpose, the non-linear reparametrization
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methods are often too expensive and too slow in practice. Furthermore, should
the numerical algorithm for solving the optimization problems (22) or (31) stop
without producing a sufficiently precise stationary point or “jump” from one
locally stationary solution to another, the differentiable dependence of the par-
ametrization on the shape parameters might be lost. In order to overcome these
problems we have successfully utilized the following approach:

1. First, we find a high quality reference parametrization, employing a possibly
expensive non-linear method.

2. During shape optimization iterations, we use a computationally inexpensive
linear method and add the validity condition di,j ≥ δZ, cf. Theorem 1 as
constraints to the shape optimization problem. Again, the number δ ∈ [0, 1]
is an algorithmic parameter and the number Z is the result of the optimiza-
tion (20).

3. If any of the validity constraints in Step 2 is active when the optimization
stops, we improve the parametrization by going to Step 1 and restart the
optimization.

In the papers [22, 23, 26] this method has been successfully applied to 2D shape
optimization problems. The Winslow functional is minimized in Step 1 and the
linearized Winslow functional is used in Step 2, except for [22] where quasi
conformal deformation was used.

6.2 Multiple Patches

So far we have only considered a single patch, but extending the non-linear
methods and their linearizations to several patches is straightforward. We simply
let the control points for the inner boundary be variables in the optimization
formulations such as (22) and (31). It is interesting to observe how the Winslow
functional distributes the angles between patches meeting a common corner, cf.
Fig. 13.

Fig. 13. An inner boundary of a multi-patch configuration. To the left the initial
parametrization, to the right the parametrization obtained by minimizing the Winslow
functional.

6.3 Higher Dimensions

Due to the Radó–Kneser–Choquet theorem the method of minimizing the Winslow
functional has a sound mathematical underpinning in dimension two. Unfortu-
nately, there is no version of this theorem in higher dimensions, and there is
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no unique way to generalize the Winslow functional to higher dimensions either.
The analysis-oriented methods, on the other hand, generalize verbatim to higher
dimensions, as does the Liao Functional.

7 Conclusion and Outlook

The construction of geometry parametrizations in isogeometric analysis is of vital
importance for obtaining reliable and accurate numerical results. In applications
of isogeometric analysis to shape optimization, the requirements to computa-
tional algorithms for constructing geometry parametrizations increase further,
owing to the repeated updates to the geometry made by the shape optimization
process. In the present work, we have proposed several methods, both linear and
non-linear, for constructing a parametrization, which meet these requirements.

The linear methods are computationally inexpensive, but do not guaran-
tee that the resulting parametrization is injective. We have outlined the spring
model, the mean values coordinates, and the quasi conformal deformation meth-
ods. Some of these can be used as an initial guess for other methods, and some
work well in the vicinity of a known valid parametrization. The injectivity of the
parametrization can be guaranteed by controlling the determinant of the Jaco-
bian, which in turn can be controlled by its coefficients in a B-spline expansion.

Two classes of non-linear parametrization methods have been considered,
which are based on maximizing a quantitative measure of the quality of the
parametrization. One class is based on the geometric quality measures, and uses
some of the methods known from mesh generation. Specifically, we have in-
vestigated the area-orthogonality, the Liao, and the Winslow functionals. The
other class of quality measures is analysis-oriented, and rely on error estimates.
Among many estimators available for adaptive meshing, we have tested three,
namely the strong residual, the weak residual, and the enrichment error norm.
The non-linear methods require more computational effort than the linear ones,
in particular the analysis-oriented methods. At the same time they produce valid
parametrizations, typically of higher quality.

We ensure the validity of the parametrization by adding the positivity of
the determinant of the Jacobian as constraints to the optimization-based par-
ametrization methods. In our computational experience, these constraints are
not active at the end of the optimization, i.e., the functional we minimize has
a local minimum in the set of valid parametrizations. This is guaranteed in the
case of the Winslow functional which has a unique minimum. To safeguard from
numerical errors, we keep the positivity of the determinant of the Jacobian as
constraints even in this case.

The analysis-oriented methods strive to make the numerical solution of the
PDE at hand as accurate as possible with respect to a given error estimator. For
the few examples of elliptic boundary value problems we have considered, they
seem to work well. However, a word of caution is required. Conceivably, instead
of making the approximation error smaller we may expose flaws in the error
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estimator and end up with a useless parametrization after all, which nevertheless
results in a small estimated error.

We are particularly interested in using isogeometric analysis for shape opti-
mization, and that puts conflicting demands on the parametrization algorithm.
It has to be fast, differentiable, robust, and reliable. We have solved the prob-
lem by using a cheap and fast linear method most of the time, and only use an
expensive non-linear method when it is required. We have considered a range
of 2D shape optimization problems and we have successfully used the Winslow
functional as the non-linear method and the linearized Winslow functional for
the linear method

The future work in the field of parametrizations in isogeometric analysis has
both practical/experimental and theoretical aspects. First of all, more tests of
the proposed optimization methods are needed on more geometries and other
equations, including non-elliptic problems, both in 2D and 3D.

For example, isogeometric analysis is known to perform very well for nu-
merically approximating the eigenvalues, providing the small error even for the
optical/high frequency part of the spectrum, apart from a few highest frequency
modes [3]. In a simple 1D example with a known spectrum, the error can be made
small for all eigenvalues by adjusting the parametrization of the geometry. As
eigenvalue approximation errors have far reaching implications for the numerical
accuracy of other problems with the same operator, it would be very interesting
to know whether such parametrization adjustments generalize to problems in
higher dimensions and can be achieved without knowing the exact spectrum.

Another fundamental issue directly related to geometry parametrization is
that of generating the patch layout in case several patches are needed. This can
be done “by hand,” but automated methods are of course highly desirable.

It would be very interesting to characterize the minima of the analysis-
oriented parametrization methods. For example, for which BVPs/error estima-
tors can we guarantee the validity of the resulting parametrization without ex-
plicitly enforcing it?

We believe that no universal linear method for generating a geometry par-
ametrization exists. We formulate it as a conjecture, and the proof of this fact
would of course be very interesting:

Conjecture 1. Let F : C1(∂I2,R2) → C1(I2,R2) be an affine map such that
F (Y)|∂I2 = Y for all Y ∈ C1(∂I2,R2). Then there is a regular map Y ∈
C1(∂I2,R2) with a positive Jacobian determinant in the corners such that F (Y)
has a negative Jacobian determinant at least at one point.

Another conjecture is related to minimizing the Winslow functional over the
finite-dimensional spaces of splines:

Conjecture 2. Let Y ∈ C1(∂I2, ∂Ω) be a valid spline parametrization of the
boundary of a domain Ω ∈ R2 with a positive Jacobian determinant in the
corners. Then there exists a finite-dimensional spline space S ⊂ C1(∂I2,R2)
and a minimizer X ∈ S of the Winslow functional, such that X is a valid
parametrization of Ω with X|∂I2 = Y.
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