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a b s t r a c t

Hierarchically porous silica monoliths are obtained in the two-step Nakanishi process, where formation
of a macroemicroporous silica gel is followed by widening micropores to mesopores through surface
etching. The latter step is carried out through hydrothermal treatment of the gel in alkaline solution and
necessitates a lengthy solvent exchange of the aqueous pore fluid before the ripened gel can be dried and
calcined into a mechanically stable macroemesoporous monolith. We show that using an ethanolewater
(95.6/4.4, v/v) azeotrope as supercritical fluid for mesopore etching eliminates the solvent exchange,
ripening, and drying steps of the classic route and delivers silica monoliths that can withstand fast
heating rates for calcination. The proposed shortcut decreases the overall preparation time from ca. one
week to ca. one day. Porosity data show that the alkaline conditions for mesopore etching are crucial to
obtain crack-free samples with a narrow mesopore size distribution. Physical reconstruction of selected
samples by confocal laser scanning microscopy and subsequent morphological analysis confirms that
monoliths prepared via the proposed shortcut possess the high homogeneity of silica skeleton and
macropore space that is desirable in adsorbents for flow-through applications.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Silica monoliths with interskeleton macropores and intra-
skeleton mesopores can be prepared by solegel processing com-
bined with phase separation and soft templating strategies relying
on various structure-directing agents [1]. Many parameters can be
addressed to influence the phase separation through spinodal
decomposition during the solegel process: from the structure-
directing agent chosen as porogen (poor solvents, surfactants,
block copolymers, emulsions) over pH and temperature of the
starting solution to type and concentration of the silica precursor.
These parameters, which affect the progress of phase separation vs.
gelation, influence the morphology of the resulting bi-continuous
gel, including the degree of macroscopic separation between
silica-rich and solvent-rich phase [2e4]. The chemical surface
properties of the monolith can be tailored through selecting

suitable precursors (co-condensation) or through postsynthesis
grafting of functional moieties [5e9].

Following seminal work from the early 1990s [10], Nakanishi
and co-workers established a two-step route to macro-
emesoporous silica monoliths in which macropore size and vol-
ume can be adjusted largely independent from the skeleton
thickness andmesopore size [11,12]. Translated intomass-transport
relevant terms, the Nakanishi process offers the possibility to adjust
the hydraulic permeability (realized by the flow-through macro-
pores) independently from the surface area (realized by the mes-
opores) and intraskeleton mass transfer resistance (determined by
the skeleton thickness) of hierarchically porous silica monoliths
[13], which makes them attractive adsorbents for chemical sepa-
rations [14,15] and solideliquid catalysis [16,17]. Their performance
in these processes, and hence the overall process efficiency, profits
from a high degree of morphological homogeneity, that is, a narrow
distribution of pore size and skeleton thickness [18,19]. These at-
tributes are also advantageous when silica monoliths are used as
nanocasting templates [20e22], because the morphological quality
of the template limits that of the casted porous medium.

The Nakanishi process starts with a silicon alkoxide and an
organic polymer, for example, tetramethoxysilane (TMOS) and
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poly(ethylene glycol) (PEG), in acidic aqueous solution [3]. The
solegel process yields a macroemicroporous gel, which is then
submitted to hydrothermal treatment (80e120 �C) under alkaline
conditions. The micropores in the gel are widened to mesopores
through surface etching with ammonia solution, usually generated
in situ through thermal decomposition of urea. Urea can already be
added to the reactants for the solegel step to ensure a homoge-
neous distribution in the gel before surface etching takes place [23].
After hydrothermal treatment, the aqueous pore liquid is
exchanged for methanol to prevent cracking of the fragile gels
during the final calcination step. The gel is immersed for 3e5 days
in repeatedly refreshed methanol, during which the pore solvent is
exchanged and a ripening process occurs in which the siliceous
matrix stiffens and shrinks. The ripened gel is calcined at typically
330e550 �C, during which the structure is dried, residual template
removed from the pores (by thermal decomposition of PEG), and
condensation of the silica backbone completed. Calcination is
approached with a shallow heating ramp (i.e., slowly) to avoid the
build-up of capillary stress that would crack the monolithic struc-
ture. From starting sol to finished monolith, the Nakanishi process
takes about one week, whereby most of the preparation time is
taken up by waiting for slow processes to complete (Scheme 1).

The time-limiting step in the Nakanishi process is solvent ex-
change. The same problem has turned up earlier in aerogel fabri-
cation, where supercritical extraction (SCE), which avoids the
build-up of capillary stress due to the absence of liquidegas in-
terfaces, has long been used as an efficient, quick, and mild method
for drying [24,25]. SCE drying, however, involves exchanging the
pore fluid present after gelation for a suitable SCE solvent (CO2 or a
low alcohol). For fast aerogel fabrication, the dreaded solvent ex-
change was circumvented by carrying out the whole synthesis
(gelation, aging, drying) under supercritical conditions or by
choosing a gelation solvent also suitable for SCE drying. Recent
examples of fast (5e6 h) aerogel syntheses include a one-step,
reactant-to-aerogel route using supercritical methanol [26] as
well as a route where an ethanolewater azeotrope served as
gelation and as supercritical drying solvent [27,28].

Although an established dryingmethod for aerogels, SCE has not
been employed in the preparation of hierarchically porous silica
monoliths, except to prevent cracking under special circumstances.
Nakanishi and co-workers [29] used the mild conditions of SCE
with CO2 (“cold drying” at 31 �C) to obtain exceptionally large silica
monoliths (1.1-L volume) with average mesopore diameters
�30 nm. While cold SCE drying prevents cracking, it does not
reduce the preparation time, because the low miscibility of water
and liquid CO2 requires two complete solvent exchanges: from
aqueous pore liquid to methanol to liquid CO2.

In this work, we eliminate the solvent exchange step from the
Nakanishi process through carrying out mesopore etching under
the conditions of SCE drying. For surface etching, we need a su-
percritical fluid that supports the thermal decomposition of urea.
Between the two obvious candidate solvents for this task, ethanol is
preferred over methanol, because methanol is toxic and super-
critical methanol is not inert towards silica. In aerogel drying with
supercritical methanol, for example, an unwanted alkylation of
surface OH groups and partial dissolution of the silica structure was
observed [25,30]. Because the pores hold water from the solegel
processing step, the SCE fluid is an ethanolewater azeotrope (95.6/
4.4, v/v) with a critical temperature of 265 �C. The main task of the
supercritical ethanolewater azeotrope (SCEWA) is to provide the
conditions for surface etching and SCE drying, but the high tem-
perature and fast mass transport properties of the supercritical
fluid are additionally expected to accelerate all involved processes.
We thus propose the SCEWA step (Scheme 1) to speed upmesopore
formation and ripening, eliminate solvent exchange, and yield dry
monoliths that can withstand fast calcination.

2. Experimental

2.1. Chemicals

TMOS was purchased from Acros Organics (Geel, Belgium), PEG
(Mn ¼ 104) and urea came from Merck Millipore (Darmstadt, Ger-
many). Acetic acid, glycerol, and octadecyltrimethoxysilane were

Scheme 1. The classic route to macroemesoporous silica monoliths via the Nakanishi process (left) vs. the proposed shortcut using a supercritical ethanolewater azeotrope
(SCEWA) mixture (right).
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obtained from SigmaeAldrich (Buchs, Switzerland, and Tauf-
kirchen, Germany). The fluorescent dye Bodipy 493/503 was sup-
plied by Life Technologies (Darmstadt, Germany).
Dimethylsulfoxide (DMSO), methanol (HPLC grade), and NaOH
(99%, p.a.) came from Carl Roth (Karlsruhe, Germany). Ethanol (190
proof) was purchased from PharmcoeAaper (Brookfield, CT). HPLC-
grade water was obtained from a Milli-Q gradient purification
system (Millipore, Bedford, MA).

2.2. Preparation of monolith samples

We first prepared a set of eight gel pieces by following an up-
scaled version of an established procedure [23]. A mixture of
5.5 g PEG (0.55 mmol) and 4.5 g urea (91.5 mmol) in 50 ml acetic
acid (0.01 mol l�1) was stirred vigorously for 10 min at room
temperature and for 15 min at 0 �C (ice bath). After addition of
28 mL TMOS (189.4 mmol) the mixture was stirred for 25 min at
0 �C to induce phase separation by spinodal decomposition of the
system. The resulting sol was filled in 10-ml portions into 15-ml
plastic vials and allowed to gel for 16 h at 25 �C (water bath).

The SCEWA step was carried out for each gel piece separately.
We used a 2-L capacity autoclave with pressure gauge and heating
mantle (Parr Instrument Company, Moline, IL). To prevent contact
between gel piece and autoclave bottom and to ensure complete
immersion of the gel piece in the reaction mixture, the gel piece
was placed on a footed stainless steel mesh that was then lowered
into the autoclave containing the reaction mixture. The reaction
mixture was 45 g urea dissolved in 0.5 l ethanol (1.5 mol l�1 urea)
for samples 1 and 3, 4.5 g urea dissolved in 0.5 l ethanol
(0.15 mol l�1 urea) for samples 2 and 4e8, plus solid NaOH in the
amounts given in Table 1 for samples 3e8. The system was heated
over 3 h to supercritical conditions, which were maintained for
20 min before venting and cooling. Fig. 1 shows a typical heating
ramp and the resulting pressures in the system. The SCEWA-
prepared silica monoliths had a diameter of 1.1 cm and a length
of 2.7 cm.

Sample 4 was subsequently calcined for 4 h at 550 �C, reached
by applying a heating rate of 8.8 �C/min.

Hazard note. Because the molar volume of supercritical ethanol
is about four times larger than that of liquid ethanol, excess solvent
can raise the pressure level beyond the permitted maximum value.
The total filling level of the autoclave should therefore be cautiously
calculated to respect the permitted maximum pressure in the
vessel. The autoclave should be vented into a water bath to prevent
the release of highly flammable ethanol vapors into the room. Only
stainless steel must be used inside the autoclave, as other metals
can react with the solvent, leading to hazardous pressure increases.
It should also be noted that using high urea concentrations

(1.5 mol l�1) in the reaction mixture led to formation of urea plugs
under the piston of the manometer.

2.3. Characterization

Monolith samples were examined by a scanning electron mi-
croscope (Smart SEM MERLIN, Carl Zeiss, Jena, Germany) using a
fractured surface. Samples were platinum-coated by a sputter
coater (HHV Scancoat Six, Boc Edwards, Kirchheim, Germany).

Nitrogen adsorptionedesorption isotherms were determined
on an automated gas adsorption station (QUADRASORB evo,
Quantachrome Corporation, Boynton Beach, FL). Samples were
evacuated for 16 h at 120 �C prior to analysis at 77 K. Isotherms
were measured up to p/p0 ¼ 0.95. Pore size distributions were
derived from the adsorption branches using the non-local density
functional theory (NLDFT) method with a cylindrical pore model.

Mercury intrusion porosimetry (MIP) was run on Pascal 140/440
porosimeters (Thermo Fisher Scientific, Rodano, Italy). Intrusion
measurements were performed over a pressure range of
0.15e400 MPa in small increments. Pore size distributions were
calculated according to the Washburn equation, assuming a mer-
cury surface tension of 0.48 N/m and a contact angle of 140�. A
blank correction file was used to compensate for mercury
compressibility and temperature effects.

Thermogravimetric analysis with mass spectrometric detection
(TGAeMS) was conducted at a heating rate of 5 �C/min up to 800 �C
on a STA 409 PC system (Netzsch, Selb, Germany) coupled to a QMG
201 quadrupole mass spectrometer (Balzers Instruments, Balzers,
Liechtenstein). Fourier-transform infrared (FT-IR) spectra were

Table 1
Preparation conditions and porosity data for SCEWA-prepared silica monoliths.

Sample Conditions SBET [m2/g]a dmeso [nm]a,b Vmeso [cm3/g]a,b dmacro [mm]c Vmacro [cm3/g]c Cracking

1 1.5 M urea, no NaOH 284 7 (6) 0.61 (0.60) 3.33 1.53 Yes
2 0.15 M urea, no NaOH 267 9 (9) 0.73 (0.57) 3.25 1.68 Yes
3 1.5 M urea, 0.02 g NaOH 244 9 (9) 0.67 (0.54) 3.54 1.60 No
4 0.15 M urea, 0.02 g NaOH 180 11 (13) 0.71 (0.63) 3.33 1.42 No
5 0.15 M urea, 0.1 g NaOH 111 14 (16) 0.70 (0.50) 3.49 1.23 No
6 0.15 M urea, 0.2 g NaOH 117 14 (16) 0.67 (0.56) 3.56 1.67 No
7 0.15 M urea, 0.3 g NaOH 92 17 (28) 0.69 (0.51) 3.58 1.09 No
8 0.15 M urea, 0.4 g NaOH 46 29 (70) 0.50 (0.17) 3.56 1.33 No
4 calcined to 550 �C in 1 h, at 550 �C for 4 h 252 12 (14) 0.86 (0.77) 3.26 2.01 No

a Calculated from nitrogen sorption data.
b Values in brackets calculated from MIP data.
c Calculated from MIP data.

Fig. 1. Progress of temperature (red) and pressure (blue) in the autoclave during the
SCEWA step. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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recorded at wavelengths from 4000 to 400 cm�1 on a Bruker FT-IR-
IFS 85 spectrometer (Karlsruhe, Germany) using the KBr pellet
technique.

2.4. Physical reconstruction by confocal laser scanning microscopy
(CLSM)

For CLSM imaging, a ca.1-mm thick diskwas cut from samples 2,
3, and 4 each. The disks were first treated with octadecyl-
trimethoxysilane for a chemically-bonded, hydrophobic modifica-
tion of the silica surface, and then stained by adsorption of the
fluorescent dye Bodipy 493/503 onto the hydrophobic surface [31].
The pore fluid in the stained disks was then exchanged for a glyc-
erol/DMSO/water (70/19/11, v/v/v) mixture that matches the
refractive index of the silica skeleton at the sodium D line
(nD ¼ 1.4582). The matching liquid was also used for embedding
and immersion of the sample in the CLSM measurements. Match-
ing the optical dispersion behavior of the silica monoliths allowed
imaging into the bulk of a sample. CLSM images were acquired on a
TCS SP5 II confocal microscopy system equippedwith a HCX PL APO
63 � /1.3 GLYC CORR CS (21 �C) glycerol immersion objective lens
(Leica Microsystems, Wetzlar, Germany). A stained monolith disk
saturatedwithmatching liquidwas placed into thematching-liquid
filled well of a custom-made sample holder. The separation of
embedding and immersion liquid by a 'type 0' cover slip (Gerhard
Menzel, Braunschweig, Germany) minimized spherical aberration
effects. Stacks of 8-bit grayscale images (4096 � 4096 pixels) were
acquired with a resolution of 30 nm (lateral) � 126 nm (axial) in
compliance with the Nyquist criterion. Images were restored by
denoising, photobleaching correction, and deconvolution prior to
segmentation into binary images of solid (silica phase) and void
pixels (macropore space). The segmented images were then used to
generate physical reconstructions of the monolith samples at
macropore resolution.

2.5. Chord length distribution (CLD) analysis of physically
reconstructed samples

Physically reconstructed monolith samples were subjected to
CLD analysis to obtain quantitative measures for the homogeneity
of silica phase (solid, with the unresolved mesopores) and macro-
pore (void) space [32]. For a CLD of the macropore space, random
points were generated in the void area of an image stack. From each
of these points 32 vectors were projected in angularly equispaced
directions. Vectors either hit the skeleton or they projected out of
the image andwere discarded. Points of originwere generated until
106 chords (the sum of the absolute lengths of an opposed pair of
vectors) were collected into a histogram (CLD). A CLD of the silica
skeleton was obtained by generating points of origin in the solid
phase and proceeding analogously. In materials with correlated
disorder (contrary to materials with Debye-randomness or highly
ordered materials), the CLDs can be described by a k-gamma
function [18]

f ðlcÞ ¼ kk

GðkÞ
lk�1
c

mk
exp

�
� k

lc
m

�
; (1)

where lc is the chord length, G the gamma function, m the mean of
the distribution, and k ¼ (m/s)2 is the squared ratio of the mean to
the standard deviation of the distribution. The k-gamma function
was fitted to the CLDs using the LevenbergeMarquardt algorithm
[31].

3. Results and discussion

3.1. Mesopore etching with the SCEWA step

The first task in establishing the SCEWA step consisted of finding
the proper conditions for mesopore etching. We used a set tem-
perature program for the SCEWA step (Fig. 1) and varied the
composition of the reaction mixture in the autoclave between in-
dividual samples. The eight gel samples submitted to the SCEWA
step were synthesized as one charge in the solegel step, so that
variations between the samples detected after the SCEWA step
should reflect the effect of the reaction mixture compositions used.
All samples were characterized after the SCEWA step by nitrogen
sorption and MIP analysis. This was possible because the samples
were dry and stable, in contrast to monolith samples prepared via
the classic route, which can only be analyzed after calcination.
Table 1 summarizes our synthetic efforts with the SCEWA step by
linking the composition of the reaction mixture used for mesopore
etching with the porosity data for the prepared monolith samples
as determined from nitrogen sorption and MIP measurements,
namely the BrunauereEmmetteTeller (BET) surface area (SBET),
mean macropore and mesopore size (dmacro, dmeso), and macropore
and mesopore volume (Vmacro, Vmeso). Fig. 2 shows the nitrogen
sorption isotherms for the SCEWA-prepared samples and the pore
size distributions derived from NLDFT analysis of the adsorption
branch together with the MIP-derived pore size distributions. The
MIP data prove that all SCEWA-prepared silica monoliths possess a
hierarchical pore space. The mean interskeleton pore size of sam-
ples 1e8 falls (as intended) within the narrow range of
dmacro ¼ 3.25e3.58 mm, whereas the MIP-determined mean size for
the intraskeleton pores varies between 6 and 70 nm. These data
show that the SCEWA step supports, like hydrothermal treatment, a
variation of the intraskeleton pore size independent from the
interskeleton pore size, and that the reaction mixture composition
has a huge influence on the intraskeleton pore size.

As explained in the Introduction, surface etching is performed
by ammonia solution generated through thermal decomposition of
urea, which is usually already added to the starting sol and thus
incorporated in the gel. Nevertheless, we consistently used urea in
the reaction mixture to prevent that in-situ generated ammonia
diffuses from the small gel piece out into the large autoclave vol-
ume and is lost for mesopore etching. We first tried a pure urea
solution as the reaction mixture, evaluating two different concen-
trations: the urea concentration in the starting solution (1.5 mol l�1,
sample 1) and a ten-fold reduced concentration (0.15 mol l�1,
sample 2). Samples 1 and 2 had rather small mesopores according
to the nitrogen sorption data (dmeso ¼ 7 or 9 nm) with narrow size
distributions, but were both cracked. Because the capillary pressure
that leads to cracking rises with decreasing pore diameter, we
concluded from the experience with samples 1 and 2 that we
needed to widen the mesopores by increasing the concentration of
the active etching agent, which is the hydroxide anion. We tried
this by adding a small amount of solid NaOH as booster chemical to
the reaction mixture. (The solid form of NaOH was chosen over
NaOH solution to avoid the presence of excess water in the auto-
clave.) Samples 3 and 4 were prepared with a reaction mixture of
0.02 g solid NaOH and 1.5 or 0.15mol l�1 urea solution, respectively.
Both samples were crack-free and fulfilled our target criteria for the
mesopore space; the nitrogen sorption data for samples 3 and 4
show narrow mesopore size distributions (ranging ca. from 6 to
21 nm) around mean values of dmeso ¼ 9e11 nm and H2 hysteresis
behavior [33]. Contrary to the presence of solid NaOH in the reac-
tion mixture, using a 10-times lower urea concentration than in the
starting sol had no decisive effect on the prepared samples. With
the high urea concentration in the reaction mixture (samples 1 and
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3), we had encountered technical difficulties through formation of
urea plugs in the autoclave. A lower urea concentration in the re-
action mixture shifted the mesopore size distributions of the pre-
pared samples to slightly higher values (compare samples 2 and 4
with samples 1 and 3, respectively, in Fig. 2), avoided urea plug
formation in the autoclave, and was thus preferable.

After samples 1e4 had revealed the addition of NaOH to the
reaction mixture as critical to the success of the SCEWA step, we
next investigated how much NaOH could be added before it had a
negative effect. Samples 5e8 were prepared with 0.15 mol l�1 urea
solution and 0.1e0.4 g added NaOH. All samples were crack-free,
but did not fulfill the target criteria for the mesopore space. The
nitrogen sorption isotherms for samples 5e8 (Fig. 2) indicate the
presence of intraskeleton pores beyond the mesopore range
(>50 nm), which means that the derived pore size distributions
underestimate the true pore size, as proven by comparisonwith the
MIP-derived values. The MIP data for samples 5e8 show very wide
size distributions for the intraskeleton pores, ranging from 10 to
100 nm. Sample 8, in particular, has more intraskeleton pores in the
sub-mm range than in the mesopore regime. Samples 5 and 6 have
an acceptable mean mesopore size around 15 nm, but contain too
many pores with sizes >30 nm to be acceptable. Overall, the
porosity data for samples 1e8 show that using small amounts of
solid NaOH (0.02 g) in addition to urea solution as the reaction
mixture for the SCEWA step is crucial to obtain crack-free mono-
liths with narrow mesopore size distributions around
dmeso z 10 nm.

3.2. Calcination after the SCEWA step

Having identified the proper alkaline conditions for the SCEWA
step (0.15 mol l�1 urea solution þ 0.02 g solid NaOH), the corre-
sponding sample 4 (Fig. 3) was selected for further processing. We
judged themorphological quality of the SCEWA-preparedmonolith

by comparison with Chromolith rods, which are silica monoliths in
analytical column format developed for high-performance liquid
chromatography (HPLC) of small molecules. The commercially
available Chromolith rods are the benchmark because their
porosity data and their performance as adsorbents in

Fig. 2. Nitrogen sorption isotherms (left column) and the corresponding pore size distributions (center column) derived from NLDFT analysis of the adsorption branch, together
with MIP-derived pore size distributions (right column) for SCEWA-prepared silica monoliths (cf. Table 1).

Fig. 3. (A) A crack-free silica monolith after the SCEWA step (sample 4, cf. Table 1). (B)
The SEM image shows the hierarchical pore space, realized by interskeleton macro-
pores (dmacro ¼ 3.33 mm) and intraskeleton mesopores (dmeso ¼ 11 nm).
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chromatographic separations are well documented [14,15,31], and
their morphology is thoroughly characterized through the appli-
cation of statistical analysis methods to physically reconstructed
samples and direct numerical simulations of flow and mass trans-
port in the physically reconstructed samples [31,34e36]. Compared
with Chromolith rods [34], sample 4 has a comparatively small BET
surface area and macropore volume, because the template (PEG)
was not removed from the pore space in the SCEWA step. In the
classic route, calcination follows after solvent exchange and serves
the dual purpose of template removal and drying (Scheme 1). After
solvent exchange monoliths are wet and fragile, necessitating a
shallow heating ramp to calcination to avoid cracking. After the
SCEWA step, in contrast, monoliths are practically dry and me-
chanically stable (Fig. 3), so that cracking need not be feared.
Sample 4 tolerated a steep heating rate of 8.8 �C/min, so that the
calcination temperature of 550 �C was reached in only 1 h. The
suitability of the chosen calcination temperature was informed by
previous experience with the classic route and validated by
TGAeMS (Fig. S1). PEG decomposition products were not detected
at temperatures <460 �C; apparently, the decomposition and
evaporation of PEG trapped in the pore space of the monolith re-
quires higher temperatures than the thermal decomposition of
unconfined PEG. Striving for a short calcination period in line with
the short SCEWA step, we found that 4 h sufficed to remove the
template from the pore space of the monolith. A comparison of the
FT-IR spectra of sample 4 acquired after the SCEWA step and after
calcination (Fig. S2) shows that the bands caused by stretch vi-
brations of the PEG methylene groups have vanished after calci-
nation. The porosity data for the calcined sample 4 (Table 1,
nitrogen sorption and MIP data in Fig. S3) reveal that calcination
has increased the macropore volume of the SCEWA-prepared
monolith from 1.42 to 2.01 cm3/g, the mesopore volume from
0.71 to 0.86 cm3/g, and the BET surface area from 180 to 252 m2/g.
For first- and second-generation Chromolith rods, a BET surface
area of 265 m2/g, a macropore volume of 2.15 and 2.33 cm3/g, and a
mesopore volume of 0.73 and 0.90 cm3/g, respectively, had been
determined [34]. According to these data, the calcined sample 4 is
comparable to Chromolith rods in BET surface area and pore
volume.

3.3. Morphological quality of SCEWA-prepared silica monoliths

To assess the morphological quality of SCEWA-prepared silica
monoliths and specifically to investigate whether mesopore for-
mation under the chosen supercritical conditions affects the pre-
formed macropore space of a monolith, samples 2, 3, and 4 were
selected for physical reconstruction at macropore resolution by
CLSM. Sample 4 meets the target conditions fully, and samples 2
and 3 are closest to sample 4 regarding the alkaline conditions used
in the SCEWA step (Table 1). The CLSM-reconstruction of sample 3
(Fig. 4A) shows a silica skeleton (containing the unresolved meso-
pores) laced by a network of open macropores, as known from
previous reconstructions of silica monoliths prepared via the
Nakanishi process [31,34e37]. The macroporosity (interstitial void
volume fraction) of the reconstructed samples was determined as
the number of voxels assigned to the void space divided by the total
number of voxels in a reconstructed volume. With values of 64.9%
(sample 2), 63.4% (sample 3), and 65.9% (sample 4), the three
samples are (as intended) nearly identical in their macroporosity,
which confirms that the SCEWA step does not interfere with the
reproducibility of this important parameter. For Chromolith rods,
very similar macroporosity values of 65e68% have been deter-
mined from physical reconstructions [31,34e36].

The homogeneity of macropore space and silica skeleton of the
SCEWA-prepared monolith samples was determined by CLD

analysis, which differs conceptually from the type of analysis used
for deriving pore size distributions from MIP data. The latter as-
sumes an idealized macropore space of well-defined, cylindrical
pores, whose diameters can be derived and their mean value
(dmacro) calculated. CLD analysis makes no assumptions about the
geometry of the constituting elements of a porous medium, but

Fig. 4. (A) Physical reconstruction of a silica monolith after the SCEWA step (sample 3,
cf. Table 1). 250 CLSM images acquired in z-direction cover a physical volume of
120 mm � 120 mm � 31 mm (x � y � z). The silica skeleton (white) contains the un-
resolved mesopores. (B) Best fits of the k-gamma function, Eq. (1), to the CLDs obtained
for the reconstructed macropore space of SCEWA-prepared samples 2, 3, and 4 (cf.
Table 1). The fits return values for the mean chord length m and the pore size homo-
geneity parameter k. (C) Comparison of m- and k-values determined for SCEWA-
prepared samples 2, 3, and 4 with values reported for silica-based adsorbent struc-
tures (monoliths and particulate packings). Adapted from Müllner et al. [18] with
permission from the Center National de la Recherche Scientifique (CNRS) and The
Royal Society of Chemistry.

M. von der Lehr et al. / Microporous and Mesoporous Materials 243 (2017) 247e253252



provides an accurate description through scanning the solidevoid
borders by chords of variable length, delivering a histogram (CLD)
of all possible straight distances within void space or solid phase.
Fitting a CLD to the k-gamma function, Eq. (1), delivers values for
the mean chord length m and for the homogeneity parameter k
(larger k-values indicate more homogeneous structures). The ho-
mogeneity of macropore space and silica skeleton is important for
the residence time distribution of solutes in an adsorbent used for
solideliquid catalysis or chromatographic separations. Solutes
traverse the macropore space through advective flow and the
mesoporous skeleton through diffusion. A homogeneous macro-
pore space reduces the velocity bias between neighboring flow
channels and thus the “backmixing” of solutes due to flow het-
erogeneities. A homogeneous silica phase supports similar diffu-
sion path lengths for solutes. A low degree of flow heterogeneity
and similar diffusion path lengths contribute to a narrow residence
time distribution of solutes, which is necessary for high process
efficiency [19]. Fig. 4B shows the best fits of the k-gamma function,
Eq. (1), to the macropore CLDs of samples 2, 3, and 4 (solid lines),
together with the values extracted for m and k (inset). The recon-
structed macropore spaces are characterized by m-values of
7.44e8.48 mm and k-values of 2.63e2.72. These values are put into
perspective by comparison with data from previous re-
constructions of classically prepared silica monolith rods and
alternative silica-based adsorbent structures (Fig. 4C). The green
shading in Fig. 4C sums up the experience made with silica
monoliths so far: they have high k-values (2.6e2.8) when their m-
values are in the >2 mm range, that is, the macropore space is highly
homogeneous as long as themacropore size does not reach the sub-
mm range [37]. The high macropore space homogeneity of silica
monoliths is one of their main advantages over alternative adsor-
bent structures, namely, packings of coreeshell or fully porous
particles. The SCEWA-prepared samples are closest to first-
generation Chromolith rods in macropore space homogeneity.
(The high macropore space homogeneity of second-generation
Chromolith rods has not yet been observed with monolith sam-
ples from academic laboratories.) For the silica phase of samples 2,
3, and 4 the CLD analysis returned values of m ¼ 3.65e3.74 mm and
k ¼ 3.54e3.62, reflecting that the SCEWA-prepared samples also
match the high skeleton homogeneity (k ¼ 3.37e3.93) of Chro-
molith rods [34]. Judging by the data received from CLD analysis of
physically reconstructed samples, the SCEWA-prepared silica
monoliths recover the morphological homogeneity of hierar-
chically porous silica monoliths used as adsorbents in HPLC
applications.

4. Conclusions

Our results show that carrying out mesopore etching, drying,
and ripening simultaneously under supercritical conditions is an
efficient way to replace the time-consuming hydrothermal treat-
ment, solvent exchange, and ripening steps of the Nakanishi pro-
cess without compromising the morphological quality of the
prepared silica monoliths. The alkaline conditions used for meso-
pore etching during the comparatively short SCEWA step are crit-
ical to the success of the synthesis: urea as the primary reagent
must be supplemented with small amounts of solid NaOH to obtain
crack-free monoliths with narrow mesopore size distributions.
Monoliths emerging from the SCEWA step are stable enough for
analysis and require only a short calcination period for template
removal. With the proposed shortcut, macroemesoporous silica

monoliths can be obtained in 30 h, a time span that encourages
variations in synthetic parameters to explore the full potential of
the Nakanishi process.
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