64 research outputs found

    Oxidative stress and mitochondrial responses to stress exposure suggest that king penguins are naturally equipped to resist stress

    Get PDF
    Exposure to unpredictable environmental stressors could influence animal health and fitness by inducing oxidative stress, potentially through downstream effects of glucocorticoid stress hormones (e.g. corticosterone) on mitochondrial function. Yet, it remains unclear whether species that have evolved in stochastic and challenging environments may present adaptations to alleviate the effects of stress exposure on oxidative stress. We tested this hypothesis in wild king penguins by investigating mitochondrial and oxidative stress responses to acute restraint-stress, and their relationships with baseline (potentially mirroring exposure to chronic stress) and stress-induced increase in corticosterone levels. Acute restraint-stress did not significantly influence mitochondrial function. However, acute restraint-stress led to a significant increase in endogenous antioxidant defences, while oxidative damage levels were mostly not affected or even decreased. High baseline corticosterone levels were associated with an up-regulation of the glutathione antioxidant system and a decrease in mitochondrial efficiency. Both processes might contribute to prevent oxidative damage, potentially explaining the negative relationship observed between baseline corticosterone and plasma oxidative damage to proteins. While stress exposure can represent an oxidative challenge for animals, protective mechanisms like up-regulating antioxidant defences and decreasing mitochondrial efficiency seem to occur in king penguins, allowing them to cope with their stochastic and challenging environment

    Comparison of HTK-Custodiol and St-Thomas solution as cardiac preservation solutions on early and midterm outcomes following heart transplantation.

    Get PDF
    The choice of the cardiac preservation solution for myocardial protection at time of heart procurement remains controversial and uncertainties persist regarding its effect on the early and midterm heart transplantation (HTx) outcomes. We retrospectively compared our adult HTx performed with 2 different solutions, in terms of hospital mortality, mid-term survival, inotropic score, primary graft dysfunction and rejection score. From January 2009 to December 2020, 154 consecutive HTx of adult patients, followed up in pre- and post-transplantation by 2 different tertiary centres, were performed at the University Hospital of Lausanne, Switzerland. From 2009 to 2015, the cardiac preservation solution used was exclusively St-Thomas, whereafter an institutional decision was made to use HTK-Custodiol only. Patients were classified in 2 groups accordingly. There were 75 patients in the St-Thomas group and 79 patients in the HTK-Custodiol group. The 2 groups were comparable in terms of preoperative and intraoperative characteristics. Postoperatively, compared to the St-Thomas group, the Custodiol group patients showed significantly lower inotropic scores [median (interquartile range): 35.7 (17.5-60.2) vs 71.8 (31.8-127), P < 0.001], rejection scores [0.08 (0.0-0.25) vs 0.14 (0.05-0.5), P = 0.036] and 30-day mortality rate (2.5% vs 14.7%, P = 0.007) even after adjusting for potential confounders. Microscopic analysis of the endomyocardial biopsies also showed less specific histological features of subendothelial ischaemia (3.8% vs 17.3%, P = 0.006). There was no difference in primary graft dysfunction requiring postoperative extracorporeal membrane oxygenation. The use of HTK-Custodiol solution significantly improved midterm survival (Custodiol versus St-Thomas: hazard ratio = 0.20, 95% confidence interval: 0.069-0.60, P = 0.004). This retrospective study comparing St-Thomas solution and HTK-Custodiol as myocardial protection during heart procurement showed that Custodiol improves outcomes after HTx, including postoperative inotropic score, rejection score, 30-day mortality and midterm survival

    Cold winter temperatures condition the egg-hatching dynamics of a grape disease vector

    Get PDF
    The leafhopper Scaphoideus titanus is the vector of a major phytoplasma grapevine disease, Flavescence dorée. The vector’s distribution is in Eastern and Northern Europe, and its population dynamics varies as a function of vineyard latitude. We tested the hypothesis that hatching dynamics are cued by cold temperatures observed in winter. We exposed eggs from a natural population to simulated “cold” and “mild” winters and varied the exposure time at 5 °C from 0 to 63 days. We show that temperature cooling mainly affected the onset of hatching and is negatively correlated to the cold time exposure. The majority of hatchings occurred more quickly in cold rather than in mild winter simulated conditions, but there was no significant difference between the duration of hatching of eggs whatever the cold time exposure. In agreement with the Northern American origin of the vector, the diapause termination and thus the timing regulation of egg hatching require cold winters

    An entire exon 3 germ-line rearrangement in the BRCA2 gene: pathogenic relevance of exon 3 deletion in breast cancer predisposition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germ-line mutations in the <it>BRCA1 </it>and <it>BRCA2 </it>genes are major contributors to hereditary breast/ovarian cancer. Large rearrangements are less frequent in the <it>BRCA2 </it>gene than in <it>BRCA1</it>. We report, here, the first total deletion of exon 3 in the <it>BRCA2 </it>gene that was detected during screening of 2058 index cases from breast/ovarian cancer families for <it>BRCA2 </it>large rearrangements. Deletion of exon 3, which is in phase, does not alter the reading frame. Low levels of alternative transcripts lacking exon 3 (Δ3 delta3 transcript) have been reported in normal tissues, which raises the question whether deletion of exon 3 is pathogenic.</p> <p>Methods</p> <p>Large <it>BRCA2 </it>rearrangements were analysed by QMPSF (Quantitative Multiplex PCR of Short Fluorescent Fragments) or MLPA (Multiplex Ligation-Dependent Probe Amplification). The exon 3 deletion was characterized with a "zoom-in" dedicated CGH array to the <it>BRCA2 </it>gene and sequencing. To determine the effect of exon 3 deletion and assess its pathogenic effect, three methods of transcript quantification were used: fragment analysis of FAM-labelled PCR products, specific allelic expression using an intron 2 polymorphism and competitive quantitative RT-PCR.</p> <p>Results</p> <p>Large rearrangements of <it>BRCA2 </it>were detected in six index cases out of 2058 tested (3% of all deleterious <it>BRCA2 </it>mutations). This study reports the first large rearrangement of the <it>BRCA2 </it>gene that includes all of exon 3 and leads to an <it>in frame </it>deletion of exon 3 at the transcriptional level. Thirty five variants in exon 3 and junction regions of <it>BRCA2 </it>are also reported, that contribute to the interpretation of the pathogenicity of the deletion. The quantitative approaches showed that there are three classes of delta3 <it>BRCA2 </it>transcripts (low, moderate and exclusive). Exclusive expression of the delta3 transcript by the mutant allele and segregation data provide evidence for a causal effect of the exon 3 deletion.</p> <p>Conclusion</p> <p>This paper highlights that large rearrangements and total deletion of exon 3 in the <it>BRCA2 </it>gene could contribute to hereditary breast and/or ovarian cancer. In addition, our findings suggest that, to interpret the pathogenic effect of any variants of exon 3, both accurate transcript quantification and co-segregation analysis are required.</p

    Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry

    Get PDF
    Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%

    Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. Methods: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. Results: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive as

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    Get PDF

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Abstract Introduction Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects
    corecore