2,315 research outputs found

    New H-band Stellar Spectral Libraries for the SDSS-III/APOGEE survey

    Get PDF
    The Sloan Digital Sky Survey--III (SDSS--III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) has obtained high resolution (R \sim 22,500), high signal-to-noise ratio (>> 100) spectra in the H-band (\sim1.5-1.7 μ\mum) for about 146,000 stars in the Milky Way galaxy. We have computed spectral libraries with effective temperature (TeffT\rm{_{eff}}) ranging from 3500 to 8000 K for the automated chemical analy\-sis of the survey data. The libraries, used to derive stellar parameters and abundances from the APOGEE spectra in the SDSS--III data release 12 (DR12), are based on ATLAS9 model atmospheres and the ASSϵ\epsilonT spectral synthesis code. We present a second set of libraries based on MARCS model atmospheres and the spectral synthesis code Turbospectrum. The ATLAS9/ASSϵ\epsilonT (TeffT\rm{_{eff}} = 3500-8000 K) and MARCS/Turbospectrum (TeffT\rm{_{eff}} = 3500-5500 K) grids cover a wide range of metallicity (-2.5 \leq [M/H] \leq ++0.5 dex), surface gravity (0 \leq log gg \leq 5 dex), microturbulence (0.5 \leq ξ\xi \leq 8 km~s1^{-1}), carbon (-1 \leq [C/M] \leq ++1 dex), nitrogen (-1 \leq [N/M] \leq ++1 dex), and α\alpha-element (-1 \leq [α\alpha/M] \leq ++1 dex) variations, having thus seven dimensions. We compare the ATLAS9/ASSϵ\epsilonT and MARCS/Turbospectrum libraries and apply both of them to the analysis of the observed H-band spectra of the Sun and the K2 giant Arcturus, as well as to a selected sample of well-known giant stars observed at very high-resolution. The new APOGEE libraries are publicly available and can be employed for chemical studies in the H-band using other high-resolution spectrographs.Comment: 45 pages, 11 figures; accepted for publication in the Astronomical Journa

    the SDSS-III APOGEE Spectral Line List for H-Band Spectroscopy

    Get PDF
    We present the H-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evaluated astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three different versions that have been used at various stages of the project. The methodology for the newly calculated astrophysical line lists is reviewed. The largest of these three line lists contains 134,457 molecular and atomic transitions. In addition to the format adopted to store the data, the line lists are available in MOOG, Synspec, and Turbospectrum formats. The limitations of the line lists along with guidance for its use on different spectral types are discussed. We also present a list of H-band spectral features that are either poorly represented or completely missing in our line list. This list is based on the average of a large number of spectral fit residuals for APOGEE observations spanning a wide range of stellar parameters.Alfred P. Sloan FoundationNational Science FoundationU.S. Department of Energy Office of ScienceJanos Bolyai Research Scholarship of the Hungarian Academy of SciencesSpanish Ministry of Economy and Competitiveness AYA-2011-27754, AYA-2014-58082-PRSF 14-50-00043McDonald Observator

    Increased paclitaxel recovery from Taxus baccata vascular stem cells using novel in situ product recovery approaches

    Get PDF
    In this study, several approaches were tested to optimise the production and recovery of the widely used anticancer drug Taxol® (paclitaxel) from culturable vascular stem cells (VSCs) of Taxus baccata, which is currently used as a successful cell line for paclitaxel production. An in situ product recovery (ISPR) technique was employed, which involved combining three commercial macro-porous resin beads (HP-20, XAD7HP and HP-2MG) with batch and semi-continuous cultivations of the T. baccata VSCs after adding methyl jasmonate (Me-JA) as an elicitor. The optimal resin combination resulted in 234 ± 23 mg of paclitaxel per kg of fresh-weight cells, indicating a 13-fold improved yield compared to the control (with no resins) in batch cultivation. This resin treatment was further studied to evaluate the resins’ removal capacity of reactive oxygen species (ROS), which can cause poor cell growth or reduce product synthesis. It was observed that the ISPR cultivations had fourfold less intracellular ROS concentration than that of the control; thus, a reduced ROS concentration established by the resin contributed to increased paclitaxel yield, contrary to previous studies. These paclitaxel yields are the highest reported to date using VSCs, and this scalable production method could be applied for a diverse range of similar compounds utilising plant cell culture. Graphical Abstract: [Figure not available: see fulltext.]

    Tracing chemical evolution over the extent of the Milky Way's Disk with APOGEE Red Clump Stars

    Get PDF
    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and alpha-element abundances of stars over a large part of the Milky Way disk. Using a sample of ~10,000 kinematically-unbiased red-clump stars with ~5% distance accuracy as tracers, the [alpha/Fe] vs. [Fe/H] distribution of this sample exhibits a bimodality in [alpha/Fe] at intermediate metallicities, -0.9<[Fe/H]<-0.2, but at higher metallicities ([Fe/H]=+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the alpha-element abundance patterns. The described abundance pattern is found throughout the range 5<R<11 kpc and 0<|Z|<2 kpc across the Galaxy. The [alpha/Fe] trend of the high-alpha sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (~10%). Using simple galactic chemical evolution models we derive an average star formation efficiency (SFE) in the high-alpha sequence of ~4.5E-10 1/yr, which is quite close to the nearly-constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (1/SFE) of ~2 Gyr. Finally, while the two alpha-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track this cannot hold in the outer Galaxy, requiring instead a mix of two or more populations with distinct enrichment histories.Comment: 18 pages, 17 figures. Accepted for publication in Ap

    Mediterranean springs: Keystone ecosystems and biodiversity refugia threatened by global change

    Get PDF
    Mediterranean spring ecosystems are unique habitats at the interface between surface water and groundwater. These ecosystems support a remarkable array of biodiversity and provide important ecological functions and ecosystem services. Spring ecosystems are influenced by abiotic, biotic, and anthropogenic factors such as the lithology of their draining aquifers, their climate, and the land use of their recharge area, all of which affect the water chemistry of the aquifer and the spring discharges. One of the most relevant characteristics of spring ecosystems is the temporal stability of environmental conditions, including physicochemical features of the spring water, across seasons and years. This stability allows a wide range of species to benefit from these ecosystems (particularly during dry periods), fostering an unusually high number of endemic species. However, global change poses important threats to these freshwater ecosystems. Changes in temperature, evapotranspiration, and precipitation patterns can alter the water balance and chemistry of spring water. Eutrophication due to agricultural practices and emergent pollutants, such as pharmaceuticals, personal care products, and pesticides, is also a growing concern for the preservation of spring biodiversity. Here, we provide a synthesis of the main characteristics and functioning of Mediterranean spring ecosystems. We then describe their ecological value and biodiversity patterns and highlight the main risks these ecosystems face. Moreover, we identify existing knowledge gaps to guide future research in order to fully uncover the hidden biodiversity within these habitats and understand the main drivers that govern them. Finally, we provide a brief summary of recommended actions that should be taken to effectively manage and preserve Mediterranean spring ecosystems for future generations. Even though studies on Mediterranean spring ecosystems are still scarce, our review shows there are sufficient data to conclude that their future viability as functional ecosystems is under severe threat.Mediterranean spring ecosystems are unique habitats supporting a remarkable array of biodiversity and providing important ecological functions and ecosystem services. However, global change poses important threats to these freshwater ecosystems, such as changes in climate patterns and increasing human pressures like overexploitation and pollution. We provide a synthesis of the main characteristics and functioning of Mediterranean spring ecosystems and their threats due to global change.imag

    Flavonoid and lignan intake in relation to bladder cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study

    Get PDF
    Item does not contain fulltextBACKGROUND: There is growing evidence of the protective role of dietary intake of flavonoids and lignans on cancer, but the association with bladder cancer has not been thoroughly investigated in epidemiological studies. We evaluated the association between dietary intakes of total and subclasses of flavonoids and lignans and risk of bladder cancer and its main morphological type, urothelial cell carcinoma (UCC), within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. METHODS: A cohort of 477 312 men and women mostly aged 35-70 years, were recruited in 10 European countries. At baseline, dietary flavonoid and lignan intakes were estimated using centre-specific validated questionnaires and a food composition database based on the Phenol-Explorer, the UK Food Standards Agency and the US Department of Agriculture databases. RESULTS: During an average of 11 years of follow-up, 1575 new cases of primary bladder cancer were identified, of which 1425 were UCC (classified into aggressive (n=430) and non-aggressive (n=413) UCC). No association was found between total flavonoid intake and bladder cancer risk. Among flavonoid subclasses, significant inverse associations with bladder cancer risk were found for intakes of flavonol (hazard ratio comparing fifth with first quintile (HRQ5-Q1) 0.74, 95% confidence interval (CI): 0.61-0.91; P-trend=0.009) and lignans (HRQ5-Q1 0.78, 95% CI: 0.62-0.96; P-trend=0.046). Similar results were observed for overall UCC and aggressive UCC, but not for non-aggressive UCC. CONCLUSIONS: Our study suggests an inverse association between the dietary intakes of flavonols and lignans and risk of bladder cancer, particularly aggressive UCC

    SARS-CoV-2 positivity in offspring and timing of mother-to-child transmission: living systematic review and meta-analysis

    Get PDF
    OBJECTIVES: To assess the rates of SARS-CoV-2 positivity in babies born to mothers with SARS-CoV-2 infection, the timing of mother-to-child transmission and perinatal outcomes, and factors associated with SARS-CoV-2 status in offspring. DESIGN: Living systematic review and meta-analysis. DATA SOURCES: Major databases between 1 December 2019 and 3 August 2021. STUDY SELECTION: Cohort studies of pregnant and recently pregnant women (including after abortion or miscarriage) who sought hospital care for any reason and had a diagnosis of SARS-CoV-2 infection, and also provided data on offspring SARS-CoV-2 status and risk factors for positivity. Case series and case reports were also included to assess the timing and likelihood of mother-to-child transmission in SARS-CoV-2 positive babies. DATA EXTRACTION: Two reviewers independently extracted data and assessed study quality. A random effects model was used to synthesise data for rates, with associations reported using odds ratios and 95% confidence intervals. Narrative syntheses were performed when meta-analysis was inappropriate. The World Health Organization classification was used to categorise the timing of mother-to-child transmission (in utero, intrapartum, early postnatal). RESULTS: 472 studies (206 cohort studies, 266 case series and case reports; 28 952 mothers, 18 237 babies) were included. Overall, 1.8% (95% confidence interval 1.2% to 2.5%; 140 studies) of the 14 271 babies born to mothers with SARS-CoV-2 infection tested positive for the virus with reverse transcriptase polymerase chain reaction (RT-PCR). Of the 592 SARS-CoV-2 positive babies with data on the timing of exposure and type and timing of tests, 14 had confirmed mother-to-child transmission: seven in utero (448 assessed), two intrapartum (18 assessed), and five during the early postnatal period (70 assessed). Of the 800 SARS-CoV-2 positive babies with outcome data, 20 were stillbirths, 23 were neonatal deaths, and eight were early pregnancy losses; 749 babies were alive at the end of follow-up. Severe maternal covid-19 (odds ratio 2.4, 95% confidence interval 1.3 to 4.4), maternal death (14.1, 4.1 to 48.0), maternal admission to an intensive care unit (3.5, 1.7 to 6.9), and maternal postnatal infection (5.0, 1.2 to 20.1) were associated with SARS-CoV-2 positivity in offspring. Positivity rates using RT-PCR varied between regions, ranging from 0.1% (95% confidence interval 0.0% to 0.3%) in studies from North America to 5.7% (3.2% to 8.7%) in studies from Latin America and the Caribbean. CONCLUSION: SARS-CoV-2 positivity rates were found to be low in babies born to mothers with SARS-CoV-2 infection. Evidence suggests confirmed vertical transmission of SARS-CoV-2, although this is likely to be rare. Severity of maternal covid-19 appears to be associated with SARS-CoV-2 positivity in offspring. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020178076. READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication

    Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    Get PDF
    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] gsim −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution
    corecore