2,879 research outputs found

    Decentralized credtor-led corporate restructuring - cross-country experience

    Get PDF
    Countries that have experienced banking crises have adopted oneof two distinct approaches toward the resolution of non-performing assets-a centralized or a decentralized solution. A centralized approach entails setting up a government agency-an asset management company-with the full responsibility for acquiring, restructuring, and selling of the assets. A decentralized approach relies on banks and other creditors to manage and resolve non-performing assets. The authors study banking crises where governments adopted a decentralized, creditor-led workout strategy following systemic crises. They use a case study approach and analyze seven banking crises in which governments mainly relied on banks to resolve non-performing assets. The study suggests that out of the seven cases, only Chile, Norway, and Poland successfully restructured their corporate sectors with companies attaining viable financial structures. The analysis underscores that as in the case of a centralized strategy the prerequisites for a successful decentralized restructuring strategy are manifold. The successful countries significantly improved the banking system's capital position, enabling banks to write down loan losses; banks as well as corporations had adequate incentives to engage in corporate restructuring; and ownership links between banks and corporations were limited or severed during crises.Financial Intermediation,Financial Crisis Management&Restructuring,Payment Systems&Infrastructure,Banks&Banking Reform,International Terrorism&Counterterrorism,Banks&Banking Reform,Financial Crisis Management&Restructuring,Financial Intermediation,International Terrorism&Counterterrorism,Banking Law

    Sommerfeld Enhancements for Thermal Relic Dark Matter

    Full text link
    The annihilation cross section of thermal relic dark matter determines both its relic density and indirect detection signals. We determine how large indirect signals may be in scenarios with Sommerfeld-enhanced annihilation, subject to the constraint that the dark matter has the correct relic density. This work refines our previous analysis through detailed treatments of resonant Sommerfeld enhancement and the effect of Sommerfeld enhancement on freeze out. Sommerfeld enhancements raise many interesting issues in the freeze out calculation, and we find that the cutoff of resonant enhancement, the equilibration of force carriers, the temperature of kinetic decoupling, and the efficiency of self-interactions for preserving thermal velocity distributions all play a role. These effects may have striking consequences; for example, for resonantly-enhanced Sommerfeld annihilation, dark matter freezes out but may then chemically recouple, implying highly suppressed indirect signals, in contrast to naive expectations. In the minimal scenario with standard astrophysical assumptions, and tuning all parameters to maximize the signal, we find that, for force-carrier mass m_phi = 250 MeV and dark matter masses m_X = 0.1, 0.3, and 1 TeV, the maximal Sommerfeld enhancement factors are S_eff = 7, 30, and 90, respectively. Such boosts are too small to explain both the PAMELA and Fermi excesses. Non-minimal models may require smaller boosts, but the bounds on S_eff could also be more stringent, and dedicated freeze out analyses are required. For concreteness, we focus on 4 mu final states, but we also discuss 4 e and other modes, deviations from standard astrophysical assumptions and non-minimal particle physics models, and we outline the steps required to determine if such considerations may lead to a self-consistent explanation of the PAMELA or Fermi excesses.Comment: 31 pages, published versio

    Challenging GRB models through the broadband dataset of GRB060908

    Get PDF
    Context: Multiwavelength observations of gamma-ray burst prompt and afterglow emission are a key tool to disentangle the various possible emission processes and scenarios proposed to interpret the complex gamma-ray burst phenomenology. Aims: We collected a large dataset on GRB060908 in order to carry out a comprehensive analysis of the prompt emission as well as the early and late afterglow. Methods: Data from Swift-BAT, -XRT and -UVOT together with data from a number of different ground-based optical/NIR and millimeter telescopes allowed us to follow the afterglow evolution from about a minute from the high-energy event down to the host galaxy limit. We discuss the physical parameters required to model these emissions. Results: The prompt emission of GRB060908 was characterized by two main periods of activity, spaced by a few seconds of low intensity, with a tight correlation between activity and spectral hardness. Observations of the afterglow began less than one minute after the high-energy event, when it was already in a decaying phase, and it was characterized by a rather flat optical/NIR spectrum which can be interpreted as due to a hard energy-distribution of the emitting electrons. On the other hand, the X-ray spectrum of the afterglow could be fit by a rather soft electron distribution. Conclusions: GRB060908 is a good example of a gamma-ray burst with a rich multi-wavelength set of observations. The availability of this dataset, built thanks to the joint efforts of many different teams, allowed us to carry out stringent tests for various interpretative scenarios showing that a satisfactorily modeling of this event is challenging. In the future, similar efforts will enable us to obtain optical/NIR coverage comparable in quality and quantity to the X-ray data for more events, therefore opening new avenues to progress gamma-ray burst research.Comment: A&A, in press. 11 pages, 5 figure

    Supernovae in Helium Star--Compact Object Binaries: A Possible Gamma-ray Burst Mechanism

    Full text link
    Helium star--compact object binaries, and helium star--neutron star binaries in particular, are widely believed to be the progenitors of the observed double neutron star systems. In these, the second neutron star is presumed to be the compact remnant of the helium star supernova. Here, the observational implications of such a supernova are discussed, and in particular are explored as a candidate gamma-ray burst mechanism. In this scenario the supernova results in a transient period of rapid accretion onto the compact object, extracting via magnetic torques its rotational energy at highly super-Eddington luminosities in the form of a narrowly beamed, strongly electromagnetically dominated jet. Compton scattering of supernova photons advected within the ejecta, and photons originating at shocks driven into the ejecta by the jet, will cool the jet and can produce the observed prompt emission characteristics, including the peak--inferred isotropic energy relation, X-ray flash characteristics, subpulse light curves, energy dependent time lags and subpulse broadening, and late time spectral softening. The duration of the burst is limited by the rate of Compton cooling of the jet, eventually creating an optically thick, moderately relativistically expanding fireball which can produce the afterglow emission. If the black hole or neutron star stays bound to a compact remnant, late term light curve variability may be observed as in SN 2003dh.Comment: Published version (includes discussion of black hole binaries). 11 pages, 1 figur

    Variable polarization in the optical afterglow of GRB 021004

    Get PDF
    We present polarimetric observations of the afterglow of gamma-ray burst (GRB) 021004, obtained with the Nordic Optical Telescope (NOT) and the Very Large Telescope (VLT) between 8 and 17 hours after the burst. Comparison among the observations shows a 45 degree change in the position angle from 9 hours after the burst to 16 hours after the burst, and comparison with published data from later epochs even shows a 90 degree change between 9 and 89 hours after the burst. The degree of linear polarization shows a marginal change, but is also consistent with being constant in time. In the context of currently available models for changes in the polarization of GRBs, a homogeneous jet with an early break time of t_b ~ 1 day provides a good explanation of our data. The break time is a factor 2 to 6 earlier than has been found from the analysis of the optical light curve. The change in the position angle of the polarization rules out a structured jet model for the GRB.Comment: 5 pages, 2 figures. Published in A&A letter

    Effects of replacing soybean meal with xylose-treated soybean meal on performance of nursing Awassi ewes and fattening lambs

    Get PDF
    Two experiments were conducted to evaluate the effect of replacing soybean meal with xylose-treated soybean meal (soypass meal; SPM) on performance of nursing Awassi ewes and fattening lambs. In Experiment 1, lasting for eight weeks, 39 Awassi ewes and their lambs were randomly assigned to three diets. Diets were formulated by replacing soybean meal from the basal diet (CON-SBM; n=13) with 50% (50% SPM; n=13) and 100% (100% SPM; n=13) SPM. Initial and final weights of the ewes were not different (P>0.55) among diets. Total gain and average daily gain (ADG) of lambs were similar (P=0.44) among diets. Ewes fed the CON-SBM diet tended (P<0.09) to have lower milk yields than those fed the 50% SPM and 100% SPM diets. No differences (P>0.38) in milk component percentages among diets were observed. In Experiment 2, lasting for 63 days, twenty weaned lambs were used to determine the effects of replacing soybean meal with SPM on growth performance. Diets were either soybean meal (SBM; n=10) or SPM (SPM; n=10). Nutrient intake and digestibility were not different between diets. However, rumen undegradable protein intake was greater (P<0.05) for the SPM diet than for the SBM diet. Final body weight, ADG and the feed conversion ratio were similar (P>0.05) between the diets. Results suggest that replacement of soybean meal with soypass meal is not likely to produce any production benefits in nursing Awassi ewes and fattening lambs except for the slight improvement of milk yield

    Two types of softening detected in X-ray afterglows of Swift bursts: internal and external shock origins?

    Full text link
    The softening process observed in the steep decay phase of early X-ray afterglows of Swift bursts has remained a puzzle since its discovery. The softening process can also be observed in the later phase of the bursts and its cause has also been unknown. Recently, it was suggested that, influenced by the curvature effect, emission from high latitudes would shift the Band function spectrum from higher energy band to lower band, and this would give rise to the observed softening process accompanied by a steep decay of the flux density. The curvature effect scenario predicts that the terminating time of the softening process would be correlated with the duration of the process. In this paper, based on the data from the UNLV GRB group web-site, we found an obvious correlation between the two quantities. In addition, we found that the softening process can be divided into two classes: the early type softening (ts,max≤"4000"st_{s,max}\leq "4000"s) and the late type softening (ts,max>"4000"st_{s,max} > "4000"s). The two types of softening show different behaviors in the duration vs. terminating time plot. In the relation between the variation rates of the flux density and spectral index during the softening process, a discrepancy between the two types of softening is also observed. According to their time scales and the discrepancy between them, we propose that the two types are of different origins: the early type is of internal shock origin and the late type is of external shock origin. The early softening is referred to the steep decay just following the prompt emission, whereas the late decay typically conceives the transition from flat decay to late afterglow decay. We suspect that there might be a great difference of the Lorentz factor in two classes which is responsible for the observed discrepancy.Comment: 20 pages, 5 figures, 2 tables, Accepted for Publication to Journal of Cosmology and Astroparticle Physics (JCAP

    Cannonballs in the context of Gamma Ray Bursts: Formation sites ?

    Full text link
    We investigate possible formation sites of the cannonballs (in the gamma ray bursts context) by calculating their physical parameters, such as density, magnetic field and temperature close to the origin. Our results favor scenarios where the cannonballs form as instabilities (knots) within magnetized jets from hyperaccreting disks. These instabilities would most likely set in beyond the light cylinder where flow velocity with Lorentz factors as high as 2000 can be achieved. Our findings challenge the cannonball model of gamma ray bursts if these indeed form inside core-collapse supernovae (SNe) as suggested in the literature; unless hyperaccreting disks and the corresponding jets are common occurrences in core-collapse SNe.Comment: 10 pages, 12 figure

    The Spectrum of Electromagnetic Jets from Kerr Black Holes and Naked Singularities in the Teukolsky Perturbation Theory

    Full text link
    We give a new theoretical basis for examination of the presence of the Kerr black hole (KBH) or the Kerr naked singularity (KNS) in the central engine of different astrophysical objects around which astrophysical jets are typically formed: X-ray binary systems, gamma ray bursts (GRBs), active galactic nuclei (AGN), etc. Our method is based on the study of the exact solutions of the Teukolsky master equation for electromagnetic perturbations of the Kerr metric. By imposing original boundary conditions on the solutions so that they describe a collimated electromagnetic outflow, we obtain the spectra of possible {\em primary jets} of radiation, introduced here for the first time. The theoretical spectra of primary electromagnetic jets are calculated numerically. Our main result is a detailed description of the qualitative change of the behavior of primary electromagnetic jet frequencies under the transition from the KBH to the KNS, considered here as a bifurcation of the Kerr metric. We show that quite surprisingly the novel spectra describe linearly stable primary electromagnetic jets from both the KBH and the KNS. Numerical investigation of the dependence of these primary jet spectra on the rotation of the Kerr metric is presented and discussed.Comment: 18 pages, 35 figures, LaTeX file. Final version. Accepted for publication in Astrophysics and Space Science. Amendments. Typos corrected. Novel notion -"primary jet" is introduced. New references and comments adde

    The Afterglow and Environment of the Short GRB111117A

    Full text link
    We present multi-wavelength observations of the afterglow of the short GRB111117A, and follow-up observations of its host galaxy. From rapid optical and radio observations we place limits of r \gtrsim 25.5 mag at \deltat \approx 0.55 d and F_nu(5.8 GHz) < 18 \muJy at \deltat \approx 0.50 d, respectively. However, using a Chandra observation at t~3.0 d we locate the absolute position of the X-ray afterglow to an accuracy of 0.22" (1 sigma), a factor of about 6 times better than the Swift-XRT position. This allows us to robustly identify the host galaxy and to locate the burst at a projected offset of 1.25 +/- 0.20" from the host centroid. Using optical and near-IR observations of the host galaxy we determine a photometric redshift of z=1.3 (+0.3,-0.2), one of the highest for any short GRB, and leading to a projected physical offset for the burst of 10.5 +/- 1.7 kpc, typical of previous short GRBs. At this redshift, the isotropic gamma-ray energy is E_{gamma,iso} \approx 3\times10^51 erg (rest-frame 23-2300 keV) with a peak energy of E_{pk} \approx 850-2300 keV (rest-frame). In conjunction with the isotropic X-ray energy, GRB111117A appears to follow our recently-reported E_x,iso-E_gamma,iso-E_pk universal scaling. Using the X-ray data along with the optical and radio non-detections we find that for a blastwave kinetic energy of E_{K,iso} \approx E_{gamma,iso}, the circumburst density is n_0 \sim 3x10^(-4)-1 cm^-3 (for a range of epsilon_B=0.001-0.1). Similarly, from the non-detection of a break in the X-ray light curve at t<3 d, we infer a minimum opening angle for the outflow of theta_j> 3-10 degrees (depending on the circumburst density). We conclude that Chandra observations of short GRBs are effective at determining precise positions and robust host galaxy associations in the absence of optical and radio detections.Comment: ApJ accepted versio
    • …
    corecore