61 research outputs found

    Negative Regulation of FcεRI-mediated Degranulation by CD81

    Get PDF
    Signaling through the high affinity receptor for immunoglobulin E (FcεRI) results in the coordinate activation of tyrosine kinases before calcium mobilization. Receptors capable of interfering with the signaling of antigen receptors, such as FcεRI, recruit tyrosine and inositol phosphatases that results in diminished calcium mobilization. Here, we show that antibodies recognizing CD81 inhibit FcεRI-mediated mast cell degranulation but, surprisingly, without affecting aggregation-dependent tyrosine phosphorylation, calcium mobilization, or leukotriene synthesis. Furthermore, CD81 antibodies also inhibit mast cell degranulation in vivo as measured by reduced passive cutaneous anaphylaxis responses. These results reveal an unsuspected calcium-independent pathway of antigen receptor regulation, which is accessible to engagement by membrane proteins and on which novel therapeutic approaches to allergic diseases could be based

    Primary chronic cold agglutinin disease: An update on pathogenesis, clinical features and therapy

    Get PDF
    Chronic cold agglutinin disease (CAD) is a subgroup of autoimmune hemolytic anemia. Primary CAD has traditionally been defined by the absence of any underlying or associated disease. The results of therapy with corticosteroids, alkylating agents and interferon-a have been poor. Cold reactive immunoglobulins against erythrocyte surface antigens are essential to pathogenesis of CAD. These cold agglutinins are monoclonal, usually IgMκ auto antibodies with heavy chain variable regions encoded by the VH4-34 gene segment. By flowcytometric and immunohistochemical assessments, a monoclonal CD20+κ+B-lymphocyte population has been demonstrated in the bone marrow of 90% of the patients, and lymphoplasmacytic lymphoma is a frequent finding. Novel attempts at treatment for primary CAD have mostly been directed against the clonal B-lymphocytes. Phase 2 studies have shown that therapy with the chimeric anti-CD20 antibody rituximab produced partial response rates of more than 50% and occasional complete responses. Median response duration, however, was only 11 months. In this review, we discuss the clinical and pathogenetic features of primary CAD, emphasizing the more recent data on its close association with clonal lymphoproliferative bone marrow disorders and implications for therapy. We also review the management and outline some perspectives on new therapy modalities

    Novel insights into an old controversy: Is coronary artery ectasia a variant of coronary atherosclerosis?

    Get PDF
    Coronary artery ectasia (CAE) is defined as a localized or diffuse non-obstructive lesion of the epicardial coronary arteries with a luminal dilation exceeding 1.5-fold the diameter of the normal adjacent arterial segment. The incidence of CAE has been reported to range between 2% and 4%, which might be an overestimation of the true frequency. The coincidence of CAE with other systemic vascular dilatations has suggested that the mechanism underlying CAE is not only localized to coronary arteries, but also to other vascular compartments such as aorta or peripheral veins. Although the pathophysiology of CAE remains largely unknown, it was supposed to represent a variant of coronary atherosclerosis. This review focuses on this controversy of whether CAE and coronary artery disease (CAD) are two manifestations of the same underlying process. There are clear differences between CAD and CAE with respect to cardiovascular risk factors such as diabetes mellitus, and pathogenic steps in disease progress such as inflammation or extracellular matrix remodeling. As this review will underscore, the current knowledge of the field is insufficient to finally clarify the causative interrelation between CAE and CAD. The clinical course and treatment of CAE mainly depends on its coexistence with CAD. When coexisting with CAD, the prognosis and treatment of CAE are the same as for CAD alone. In isolated CAE, prognosis is better and anti-platelet drugs are the mainstay of treatment. Surgical treatment can be considered in selected patients. For clarifying the mechanism underlying CAE, additional clinical, histopathological and pathophysiological investigations are required. In fact, every patient with CAE should be evaluated systematically for pathological changes in other vascular territories, both in the arterial system as well as in the venous system, which might occur in the disease process

    The Flavonoid Luteolin Inhibits Fcγ-Dependent Respiratory Burst in Granulocytes, but Not Skin Blistering in a New Model of Pemphigoid in Adult Mice

    Get PDF
    Bullous pemphigoid is an autoimmune blistering skin disease associated with autoantibodies against the dermal-epidermal junction. Passive transfer of antibodies against BP180/collagen (C) XVII, a major hemidesmosomal pemphigoid antigen, into neonatal mice results in dermal-epidermal separation upon applying gentle pressure to their skin, but not in spontaneous skin blistering. In addition, this neonatal mouse model precludes treatment and observation of diseased animals beyond 2–3 days. Therefore, in the present study we have developed a new disease model in mice reproducing the spontaneous blistering and the chronic course characteristic of the human condition. Adult mice were pre-immunized with rabbit IgG followed by injection of BP180/CXVII rabbit IgG. Mice pre-immunized against rabbit IgG and injected 6 times every second day with the BP180/CXVII-specific antibodies (n = 35) developed spontaneous sustained blistering of the skin, while mice pre-immunized and then treated with normal rabbit IgG (n = 5) did not. Blistering was associated with IgG and complement C3 deposits at the epidermal basement membrane and recruitment of inflammatory cells, and was partly dependent on Ly-6G-positive cells. We further used this new experimental model to investigate the therapeutic potential of luteolin, a plant flavonoid with potent anti-inflammatory and anti-oxidative properties and good safety profile, in experimental BP. Luteolin inhibited the Fcγ-dependent respiratory burst in immune complex-stimulated granulocytes and the autoantibody-induced dermal-epidermal separation in skin cryosections, but was not effective in suppressing the skin blistering in vivo. These studies establish a robust animal model that will be a useful tool for dissecting the mechanisms of blister formation and will facilitate the development of more effective therapeutic strategies for managing pemphigoid diseases

    Do Stress Responses Promote Leukemia Progression? An Animal Study Suggesting a Role for Epinephrine and Prostaglandin-E2 through Reduced NK Activity

    Get PDF
    In leukemia patients, stress and anxiety were suggested to predict poorer prognosis. Oncological patients experience ample physiological and psychological stress, potentially leading to increased secretion of stress factors, including epinephrine, corticosteroids, and prostaglandins. Here we tested whether environmental stress and these stress factors impact survival of leukemia-challenged rats, and studied mediating mechanisms. F344 rats were administered with a miniscule dose of 60 CRNK-16 leukemia cells, and were subjected to intermittent forced swim stress or to administration of physiologically relevant doses of epinephrine, prostaglandin-E2 or corticosterone. Stress and each stress factor, and/or their combinations, doubled mortality rates when acutely applied simultaneously with, or two or six days after tumor challenge. Acute administration of the β-adrenergic blocker nadolol diminished the effects of environmental stress, without affecting baseline survival rates. Prolonged β-adrenergic blockade or COX inhibition (using etodolac) also increased baseline survival rates, possibly by blocking tumor-related or normal levels of catecholamines and prostaglandins. Searching for mediating mechanisms, we found that each of the stress factors transiently suppressed NK activity against CRNK-16 and YAC-1 lines on a per NK basis. In contrast, the direct effects of stress factors on CRNK-16 proliferation, vitality, and VEGF secretion could not explain or even contradicted the in vivo survival findings. Overall, it seems that environmental stress, epinephrine, and prostaglandins promote leukemia progression in rats, potentially through suppressing cell mediated immunity. Thus, patients with hematological malignancies, which often exhibit diminished NK activity, may benefit from extended β-blockade and COX inhibition

    Lack of Galanin 3 Receptor Aggravates Murine Autoimmune Arthritis

    Get PDF
    Neurogenic inflammation mediated by peptidergic sensory nerves has a crucial impact on the pathogenesis of various joint diseases. Galanin is a regulatory sensory neuropeptide, which has been shown to attenuate neurogenic inflammation, modulate neutrophil activation, and be involved in the development of adjuvant arthritis, but our current understanding about its targets and physiological importance is incomplete. Among the receptors of galanin (GAL1-3), GAL3 has been found to be the most abundantly expressed in the vasculature and on the surface of some immune cells. However, since there are minimal in vivo data on the role of GAL3 in joint diseases, we analyzed its involvement in different inflammatory mechanisms of the K/BxN serum transfer-model of autoimmune arthritis employing GAL 3 gene-deficient mice. After arthritis induction, GAL3 knockouts demonstrated increased clinical disease severity and earlier hindlimb edema than wild types. Vascular hyperpermeability determined by in vivo fluorescence imaging was also elevated compared to the wild-type controls. However, neutrophil accumulation detected by in vivo luminescence imaging or arthritic mechanical hyperalgesia was not altered by the lack of the GAL3 receptor. Our findings suggest that GAL3 has anti-inflammatory properties in joints by inhibiting vascular hyperpermeability and consequent edema formation
    corecore