64 research outputs found

    Pharmacokinetics of anti-TB drugs in Malawian children: reconsidering the role of ethambutol

    Get PDF
    Background Current guidelines for dosing of anti-TB drugs in children advocate higher doses for rifampicin and isoniazid despite limited availability of paediatric data on the pharmacokinetics of these drugs, especially from Africa, where the burden of childhood disease remains high. Methods Thirty children aged 6 months to 15 years underwent intensive pharmacokinetic sampling for first-line anti-TB drugs at Queen Elizabeth Central Hospital, Blantyre, Malawi. Rifampicin, isoniazid, pyrazinamide and ethambutol were dosed at 10, 5, 25 and 20 mg/kg, respectively. Plasma drug concentrations were determined using sensitive, validated bioanalytical methods and summary pharmacokinetic parameters were estimated using non-compartmental analysis. Results The median (IQR) Cmax was 2.90 (2.08–3.43), 3.37 (2.55–4.59), 34.60 (32.30–40.90) and 1.20 (0.85–1.68) mg/L while the median (IQR) AUC0–∞ was 16.92 (11.10–22.74), 11.48 (7.35–18.93), 333.50 (279.50–487.2) and 8.65 (5.96–11.47) mg·h/L for rifampicin, isoniazid, pyrazinamide and ethambutol, respectively. For all drugs, pharmacokinetic parameters relating to drug absorption and exposure were lower than those published for adults, though similar to existing paediatric data from sub-Saharan Africa. Weight and/or dose predicted at least one measure of exposure for all drugs. Age-related decreases in CL/F for rifampicin and pyrazinamide and a biphasic elimination pattern of isoniazid were observed. Predicted AUC0–∞ for rifampicin dosed at 15 mg/kg was comparable to that of adults while the dose required to achieve ethambutol exposure similar to that in adults was 55 mg/kg or higher. Conclusions These data support recently revised WHO recommendations for dosing of anti-TB drugs in children, but dosing of ethambutol in children also appears inadequate by comparison with adult pharmacokinetic data

    Pharmacokinetics and safety profile of artesunate-amodiaquine co-administered with antiretroviral therapy in malaria uninfected HIV-positive Malawian adults.

    Get PDF
    There are limited data on the pharmacokinetic and safety profiles of artesunate-amodiaquine in human immnunodeficiency virus infected (HIV+) individuals receiving antiretroviral therapy. In a two-step intensive sampling pharmacokinetic trial, we compared area under the concentration time curve from 0 to 28 days (AUC0-28 days) of an active metabolite of amodiaquine, desethylamodiaquine, and treatment-emergent adverse events between antiretroviral therapy naive HIV+ adults and those taking nevirapine and ritonavir-boosted lopinavir-based antiretroviral therapy. In step 1, malaria uninfected adults (n=6/arm) received half the standard adult treatment regimen of artesunate-amodiaquine. In step 2, another cohort (n=25/arm) received the full regimen. In step 1, there were no safety signals and significant differences in desethylamodiaquine AUC0-28 days among participants in the ritonavir-boosted lopinavir, nevirapine and antiretroviral therapy-naive arms. In step 2, compared with the antiretroviral therapy-naive arm, participants in the ritonavir-boosted lopinavir arm had 51% lower desethylamodiaquine AUC0-28 days, (geometric mean [95% CI]; 23,822 [17,458-32506] vs 48,617 [40,787-57,950] ng.hr/mL, p < 0.001). No significant differences in AUC0-28 days were observed between nevirapine and antiretroviral therapy-naïve arms. Treatment-emergent transaminitis was higher in the nevirapine (20% [5/25]) than the antiretroviral therapy naïve (0.0% [0/25]) arm (risk difference 20% [95% CI:4.3-35.7] p=0.018). Ritonavir-boosted lopinavir antiretroviral regimen was associated with reduced desethylamodiaquine exposure which may compromise artesunate-amodiaquine’s efficacy. Co-administration of nevirapine and artesunate amodiaquine may be associated with hepatoxicity

    Pharmacokinetics of Antituberculosis Drugs in HIV-Positive and HIV-Negative Adults in Malawi

    Get PDF
    Limited data address the impact of HIV co-infection on the pharmacokinetics of anti-tuberculosis drugs in Sub-Saharan Africa. 47 Malawian adults underwent rich pharmacokinetic sampling at 0-0.5-1-2-3-4-6-8 and 24 hours post-dose. 51% were male; mean age was 34 years. 65% were HIV-positive with a mean CD4 count of 268 cells/μL. Anti-tuberculosis drugs were administered as fixed-dose combinations (rifampicin150mg/isoniazid75mg/pyrazinamide400mg/ethambutol275mg) according to recommended weight bands. Plasma drug concentrations were determined by high-performance liquid chromatography (rifampicin and pyrazinamide) or liquid chromatography-mass spectrometry (isoniazid and ethambutol). Data were analysed by non-compartmental methods and analysis of variance of log-transformed summary parameters. Pharmacokinetic parameters were: rifampicin Cmax 4.129 (2.474-5.596)μg/mL, AUC0-24 21.32 (13.57-28.60)μg/mL*h, half-life 2.45 (1.86-3.08)h; isoniazid Cmax 3.97 (2.979-4.544)μg/mL, AUC0-24 22.5 (14.75-34.59)μg/mL*h, half-life 3.93 (3.18-4.73)h.; pyrazinamide Cmax 34.21 (30.00-41.60)μg/mL, AUC0-24 386.6 (320.0-463.7)μg/mL*h, half-life 6.821 (5.71-8.042)h; ethambutol Cmax 2.278 (1.694-3.098)μg/mL, AUC0-24 20.41 (16.18-26.27)μg/mL*h, half-life 7.507 (6.517-8.696)h. Isoniazid PK data analysis suggested that around two-thirds were slow acetylators. Dose, weight and weight-adjusted dose were not significant predictors of PK exposure probably due to weight-banded dosing. In this first pharmacokinetic study of tuberculosis drugs in Malawian adults, measures of pharmacokinetic exposure were comparable with other studies for all first line drugs except for rifampicin, for which Cmax and AUC0-24 were notably lower. Contrary to some earlier observations, HIV status did not significantly affect AUC of any of the drugs. Increasing the dose of rifampicin could be beneficial in African adults, irrespective of HIV status. Current co-trimoxazole prophylaxis was associated with an increase in half-life of isoniazid of 41% (p=0.022). Possible competitive interactions between isoniazid and sulphamethoxazole mediated by the N-acetyltransferase pathway should therefore be explored further

    Seasonal Intermittent Preventive Treatment for the Prevention of Anaemia and Malaria in Ghanaian Children: A Randomized, Placebo Controlled Trial

    Get PDF
    BACKGROUND: Malaria and anaemia are the leading causes of morbidity and mortality in children in sub-Saharan Africa. We have investigated the effect of intermittent preventive treatment with sulphadoxine-pyrimethamine or artesunate plus amodiaquine on anaemia and malaria in children in an area of intense, prolonged, seasonal malaria transmission in Ghana. METHODS: 2451 children aged 3-59 months from 30 villages were individually randomised to receive placebo or artesunate plus amodiaquine (AS+AQ) monthly or bimonthly, or sulphadoxine-pyrimethamine (SP) bimonthly over a period of six months. The primary outcome measures were episodes of anaemia (Hb1 year old when they received IPTc compared to the placebo group. However the incidence of malaria in the post intervention period was higher in children who were <1 year old when they received AS+AQ monthly compared to the placebo group. INTERPRETATION: IPTc is safe and efficacious in reducing the burden of malaria in an area of Ghana with a prolonged, intense malaria transmission season. TRIAL REGISTRATION: ClinicalTrials.gov NCT00119132

    Distribution of Medication Considering Information, Transshipment, and Clustering: Malaria in Malawi

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143762/1/poms12826.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143762/2/poms12826-sup-0001-Appendix.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143762/3/poms12826_am.pd

    Impact of Maternal HIV Infection and Placental Malaria on the Transplacental Transfer of Influenza Antibodies in Mother-Infant Pairs in Malawi, 2013-2014

    Get PDF
    Background: Maternal influenza vaccination protects infants against influenza virus infection. Impaired transplacental transfer of influenza antibodies may reduce this protection. Methods: We conducted a cross-sectional study of influenza vaccine–naïve pregnant women recruited at delivery from Blantyre (urban, low malaria transmission) and Chikwawa (rural, high malaria transmission) in Southern Malawi. HIV-infected mothers were excluded in Chikwawa. Maternal and cord blood antibodies against circulating influenza strains A/California/7/2009, A/Victoria/361/2011, B/Brisbane/60/2008, and B/Wisconsin/1/2010 were measured by hemagglutination inhibition (HAI). We studied the impact of maternal HIV infection and placental malaria on influenza antibody levels in mother–infant pairs in Blantyre and Chikwawa, respectively. Results: We included 454 mother–infant pairs (Blantyre, n = 253; Chikwawa, n = 201). HIV-infected mothers and their infants had lower seropositivity (HAI titer ≥1:40) against influenza A(H1N1)pdm09 (mothers, 24.3 vs 45.4%; P = .02; infants, 24.3 vs 50.5%; P = .003) and A(H3N2) (mothers, 37.8% vs 63.9%; P = .003; infants, 43.2 vs 64.8%; P = .01), whereas placental malaria had an inconsistent effect on maternal and infant seropositivity. In multivariable analyses, maternal HIV infection was associated with reduced infant seropositivity (A(H1N1)pdm09: adjusted odds ratio [aOR], 0.34; 95% confidence interval [CI], 0.15–0.79; A(H3N2): aOR, 0.43; 95% CI, 0.21–0.89). Transplacental transfer was not impaired by maternal HIV or placental malaria. Conclusions: Maternal HIV infection influenced maternal antibody response to influenza A virus infection, and thereby antibody levels in newborns, but did not affect transplacental antibody transfer

    A Randomized Controlled Trial of Folate Supplementation When Treating Malaria in Pregnancy with Sulfadoxine-Pyrimethamine

    Get PDF
    OBJECTIVES: Sulfadoxine-pyrimethamine (SP) is an antimalarial drug that acts on the folate metabolism of the malaria parasite. We investigated whether folate (FA) supplementation in a high or a low dose affects the efficacy of SP for the treatment of uncomplicated malaria in pregnant women. DESIGN: This was a randomized, placebo-controlled, double-blind trial. SETTING: The trial was carried out at three hospitals in western Kenya. PARTICIPANTS: The participants were 488 pregnant women presenting at their first antenatal visit with uncomplicated malaria parasitaemia (density of ≥ 500 parasites/μl), a haemoglobin level higher than 7 g/dl, a gestational age between 17 and 34 weeks, and no history of antimalarial or FA use, or sulfa allergy. A total of 415 women completed the study. INTERVENTIONS: All participants received SP and iron supplementation. They were randomized to the following arms: FA 5 mg, FA 0.4 mg, or FA placebo. After 14 days, all participants continued with FA 5 mg daily as per national guidelines. Participants were followed at days 2, 3, 7, 14, 21, and 28 or until treatment failure. OUTCOME MEASURES: The outcomes were SP failure rate and change in haemoglobin at day 14. RESULTS: The proportion of treatment failure at day 14 was 13.9% (19/137) in the placebo group, 14.5% (20/138) in the FA 0.4 mg arm (adjusted hazard ratio [AHR], 1.07; 98.7% confidence interval [CI], 0.48 to 2.37; p = 0.8), and 27.1% (38/140) in the FA 5 mg arm (AHR, 2.19; 98.7% CI, 1.09 to 4.40; p = 0.005). The haemoglobin levels at day 14 were not different relative to placebo (mean difference for FA 5 mg, 0.17 g/dl; 98.7% CI, −0.19 to 0.52; and for FA 0.4 mg, 0.14 g/dl; 98.7% CI, −0.21 to 0.49). CONCLUSIONS: Concomitant use of 5 mg FA supplementation compromises the efficacy of SP for the treatment of uncomplicated malaria in pregnant women. Countries that use SP for treatment or prevention of malaria in pregnancy need to evaluate their antenatal policy on timing or dose of FA supplementation

    Duration of Protection against Malaria and Anaemia Provided by Intermittent Preventive Treatment in Infants in Navrongo, Ghana

    Get PDF
    BACKGROUND: Intermittent preventive treatment for malaria in Infants (IPTi) has been shown to give effective and safe protection against malaria. It has been suggested that IPTi might have long-lasting beneficial effects but, in most settings, the protection provided by IPTi appears to be short-lived. Knowledge of the duration of protection given by IPTi would help interpret the results of existing trials and suggest optimal delivery schedules for IPTi. This study investigated how the protective efficacy of IPTi against malaria and anaemia changes over time. METHODS AND FINDINGS: A secondary analysis of data from a cluster-randomised, placebo-controlled trial of IPTi using sulfadoxine-pyrimethamine (SP) in Ghana was conducted. In this trial IPTi was given to 2485 infants at 3, 4, 9 and 12 months of age; children remained in follow-up until two years of age. Poisson regression with a random effect to adjust for the cluster-randomised design was used to determine protective efficacy of IPTi against clinical malaria and anaemia in defined time strata following administration of IPTi. Analysis of first-or-only clinical malaria episode following the individual IPTi doses showed that some protection against malaria lasted between 4 to 6 weeks. A similar pattern was seen when the incidence of all malaria episodes up to 2 years of age was analysed in relation to the most recent IPT, by pooling the incidence of malaria after the individual IPTi doses. Protective efficacy within four weeks of IPTi was 75.2% (95% CI: 66-82) against malaria, 78.9% (95% CI: 69-86) against high parasite density malaria, and 93.8% (95% CI: 73-99) against anaemia. Protection against these outcomes was short-lived, with evidence of any effect lasting for only 6, 6 and 4 weeks respectively. Protection in children who were parasitaemic when receiving IPTi appeared to be of shorter duration than in uninfected children. There was no evidence of any benefit of IPTi after the immediate period following the IPTi doses. CONCLUSIONS: Intermittent preventive treatment provides considerable protection against malaria and anaemia for short periods, even in an area of intense seasonal transmission. Due to the relatively short duration of protection provided by each dose of IPTi, this treatment will be of most benefit when delivered at the time of peak malaria incidence

    Safety and benefits of interventions to increase folate status in malaria-endemic areas.

    Get PDF
    For decades, folic acid has routinely been given to prevent or treat anaemia in children, pregnant women and people with sickle cell disease. However, there is no conclusive evidence that folate deficiency anaemia constitutes a public health problem in any of these groups. Industrial flour fortification is recommended and implemented in many countries to combat neural tube defects. Dietary folates or folic acid can antagonise the action of antifolate drugs that play a critical role in the prevention and treatment of malaria. Randomised trials have shown that folic acid supplementation increases the rate of treatment failures with sulfadoxine-pyrimethamine. The efficacy of antifolate drugs against Plasmodium is maximized in the absence of exogenous folic acid, suggesting that there is no safe minimum dose of ingested folic acid. We here review the safety and benefits of interventions to increase folate status in malaria-endemic countries. We conclude that formal cost-benefit analyses are required
    corecore