38 research outputs found

    Consumption of an Anthocyanin-Rich Extract Made From New Zealand Blackcurrants Prior to Exercise May Assist Recovery From Oxidative Stress and Maintains Circulating Neutrophil Function: A Pilot Study

    Get PDF
    Aim: To evaluate blackcurrant anthocyanin-rich extract (BAE) consumption on time- and dose-dependent plasma anthocyanin bioavailability and conduct a pilot study to explore the potential effect of BAE in promoting recovery from exercise-induced oxidative stress, and maintenance of circulating neutrophil function.Methods: Time- and dose-dependent blackcurrant anthocyanin bioavailability was assessed using LC-MS in 12 participants over 6 h after the ingestion of a placebo or BAE containing 0.8, 1.6, or 3.2 mg/kg total anthocyanins. In a separate pilot intervention exercise trial, 32 participants consumed either a placebo or 0.8, 1.6, or 3.2 mg/kg BAE (8 individuals per group), and then 1 h later performed a 30 min row at 70% VO2max. Blood was collected during the trial for oxidative, antioxidant, inflammatory, and circulating neutrophil status.Results: Consumption of BAE caused a time- and dose-dependent increase in plasma anthocyanins, peaking at 2 h after ingestion of 3.2 mg/kg BAE (217 ± 69 nM). BAE consumed 1 h prior to a 30 min row had no effect on plasma antioxidant status but hastened the recovery from exercise-induced oxidative stress: By 2 h recovery, consumption of 1.6 mg/kg BAE prior to exercise caused a significant (P < 0.05) 34 and 32% decrease in post-exercise plasma oxidative capacity and protein carbonyl levels, respectively, compared to placebo. BAE consumption prior to exercise dose-dependently attenuated a small, yet significant (P < 0.01) transient 13 ± 2% decline in circulating neutrophils observed in the placebo group immediately post-exercise. Furthermore, the timed consumption of either 1.6 or 3.2 mg/kg BAE attenuated a 17 ± 2.4% (P < 0.05) decline in neutrophil phagocytic capability of opsonised FITC-Escherichia coli observed 6 h post-exercise in the placebo group. Similarly, a dose-dependent increase in neutrophil surface expression of complement receptor-3 complex (CR3, critical for effective phagocytosis of opsonised microbes), was observed 6 h post-exercise in both 1.6 and 3.2 mg/kg BAE intervention groups.Conclusions: Consumption of BAE (>1.6 mg/kg) 1 h prior to exercise facilitated recovery from exercise-induced oxidative stress and preserved circulating neutrophil function. This study provides data to underpin a larger study designed to evaluate the efficacy of timed BAE consumption on post-exercise recovery and innate immunity

    Acetate Kinase Isozymes Confer Robustness in Acetate Metabolism

    Get PDF
    Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300 species but surprisingly, little work has been done to clarify whether this has any significance. In an attempt to gain further insight we have studied the two ACKs (AckA1, AckA2) encoded by two neighboring genes conserved in Lactococcus lactis (L. lactis) by analyzing protein sequences, characterizing transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. Consistently, growth experiments of mutant strains reveal that AckA1 has a higher capacity for acetate production which allows faster growth in an environment with high acetate concentration. Meanwhile, AckA2 is important for fast acetate-dependent growth at low concentration of acetate. The results demonstrate that the two ACKs have complementary physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an environment with varying concentrations of acetate

    Culture and the Gender Gap in Competitive Inclination: Evidence from the Communist Experiment in China

    Full text link

    Preparative enzymatic synthesis of glucuronides of zearalenone and five of its metabolites

    No full text
    The resorcylic acid lactones zearalenone (1), α-zearalenol (2), β-zearalenol (3), α-zearalanol (zeranol) (4), β-zearalanol (taleranol) (5), and zearalanone (6) were converted to their glucuronides on a preparative scale in good yields. Reactions were conducted with bovine uridine 5′-diphosphoglucuronyl transferase (UDPGT) as catalyst and uridine 5′-diphosphoglucuronic acid (UDPGA) as cofactor. The glucuronides were isolated by column chromatography and characterized by NMR spectroscopy and mass spectrometry. Although the principal products were 4-O-glucuronides (i.e., linkage through a phenolic hydroxyl), significant quantities of the 6′-O-glucuronides (i.e., linkage through the aliphatic hydroxyl) of alcohols 2, 4, and 5 were also isolated. In the case of 3, the 2-O-glucuronide was isolated as the minor product. Overall isolated yields of glucuronides, performed on a 20−50 mg scale, were typically ca. 80% based on the resorcylic acid lactone starting material. LC-UV-MS2 analysis of purified specimens revealed MS2 fragmentations useful for defining the point of attachment of the glucuronide moiety to the zearalenone nucleus

    Phytohormone and Putative Defense Gene Expression Differentiates the Response of ‘Hayward’ Kiwifruit to Psa and Pfm Infections

    No full text
    Pseudomonas syringae pv. actinidiae (Psa) and Pseudomonas syringae pv. actinidifoliorum (Pfm) are closely related pathovars infecting kiwifruit, but Psa is considered one of the most important global pathogens, whereas Pfm is not. In this study of Actinidia deliciosa ‘Hayward’ responses to the two pathovars, the objective was to test whether differences in plant defense responses mounted against the two pathovars correlated with the contrasting severity of the symptoms caused by them. Results showed that Psa infections were always more severe than Pfm infections, and were associated with highly localized, differential expression of phytohormones and putative defense gene transcripts in stem tissue closest to the inoculation site. Phytohormone concentrations of jasmonic acid (JA), jasmonate isoleucine (JA-Ile), salicylic acid (SA) and abscisic acid were always greater in stem tissue than in leaves, and leaf phytohormones were not affected by pathogen inoculation. Pfm inoculation induced a threefold increase in SA in stems relative to Psa inoculation, and a smaller 1.6-fold induction of JA. Transcript expression showed no effect of inoculation in leaves, but Pfm inoculation resulted in the greatest elevation of the SA marker genes, PR1 and glucan endo-1,3-beta-glucosidase (β-1,3-glucosidase) (32- and 25-fold increases, respectively) in stem tissue surrounding the inoculation site. Pfm inoculation also produced a stronger response than Psa inoculation in localized stem tissue for the SA marker gene PR6, jasmonoyl-isoleucine-12-hydrolase (JIH1), which acts as a negative marker of the JA pathway, and APETALA2/Ethylene response factor 2 transcription factor (AP2 ERF2), which is involved in JA/SA crosstalk. WRKY40 transcription factor (a SA marker) was induced equally in stems by wounding (mock inoculation) and pathovar inoculation. Taken together, these results suggest that the host appears to mount a stronger, localized, SA-based defense response to Pfm than Psa
    corecore