378 research outputs found

    The Capture and Escape of Stars

    Get PDF
    The shape of galaxies depends on their orbital populations. These populations change through capture into and escape from resonance. Capture problems fall into distinct cases depending upon the shape of the potential well. To visualise the effective potential well for orbital capture, a diagrammatic approach to the resonant perturbation theory of Born is presented. These diagrams we call equiaction sections. To illustrate their use, we present examples drawn from both galactic and Solar System dynamics. The probability of capture for generic shapes of the potential well is calculated. A number of predictions are made. First, there are barred galaxies that possess two outer rings of gas and stars (type R ′ 1R ′ 2). We show how to relate changes in the pattern speed and amplitude of the bar to the strength of the two rings. Secondly, under certain conditions, small disturbances can lead to dramatic changes in orbital shape. This can be exploited as a mechanism to pump counter-rotating stars and gas into the nuclei of disk galaxies. Tidal resonant forcing of highly inclined orbits around a central mass causes a substantial increase in the likelihood of collision. Thirdly, the angular momentum of a potential well is changed by the passage of stars across or capture into the well. This can lead to the creation of holes, notches and high velocity tails in the stellar distribution function, whose form we explicitly calculate.Peer reviewe

    Magneto-transport in a binary alloy ring

    Full text link
    Magneto-transport properties are investigated in a binary alloy ring subjected to an Aharonov-Bohm (AB) flux \phi within a single-band non-interacting tight-binding framework. In the first part, we expose analytically the behavior of persistent current in an isolated ordered binary alloy ring as functions of electron concentration N_e and AB flux \phi. While, in the second part of the article, we discuss electron transport properties through a binary alloy ring attached to two semi-infinite one-dimensional metallic electrodes. The effect of impurities is also analyzed. From our study we propose that under suitable choices of the parameter values the system can act as a p-type or an n-type semiconductor.Comment: 7 pages, 8 figure

    Multi-terminal Electron Transport Through Single Phenalenyl Molecule: A Theoretical Study

    Full text link
    We do parametric calculations to elucidate multi-terminal electron transport properties through a molecular system where a single phenalenyl molecule is attached to semi-infinite one-dimensional metallic leads. A formalism based on the Green's function technique is used for the calculations while the model is described by tight-binding Hamiltonian. We explore the transport properties in terms of conductance, reflection probability as well as current-voltage characteristic. The most significant feature we articulate is that all these characteristics are very sensitive to the locations where the leads are connected and also the molecule-to-lead coupling strengths. The presence of other leads also has a remarkable effect on these transport properties. We study these phenomena for two-, three- and four-terminal molecular systems. Our numerical study may be utilized in designing tailor-made molecular electronic devices.Comment: 13 pages, 15 figure

    Quantum Transport in an Array of Mesoscopic Rings: Effect of Interface Geometry

    Full text link
    Electron transport properties are investigated in an array of mesoscopic rings, where each ring is threaded by a magnetic flux ϕ\phi. The array is attached to two semi-infinite one-dimensional metallic electrodes, namely, source and drain, where the rings are considered either in series or in parallel configuration. A simple tight-binding model is used to describe the system and all the calculations are done based on the Green's function formalism. Here, we present conductance-energy and current-voltage characteristics in terms of ring-to-electrode coupling strength, ring-electrode interface geometry and magnetic flux. Most interestingly it is observed that, typical current amplitude in an array of mesoscopic rings in the series configuration is much larger compared to that in parallel configuration of those rings. This feature is completely different from the classical analogy which may provide an important signature in designing nano-scale electronic devices.Comment: 13 pages, 12 figure

    Landau-Zener-Stuckelberg interferometry

    Full text link
    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stuckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stuckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.Comment: 34 single-column pages, 11 figure

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV

    Get PDF
    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore