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ABSTRACT
The shape of galaxies depends on their orbital populations. These populations change
through capture into and escape from resonance. Capture problems fall into distinct
cases depending upon the shape of the potential well. To visualise the effective poten-
tial well for orbital capture, a diagrammatic approach to the resonant perturbation
theory of Born is presented. These diagrams we call equiaction sections. To illustrate
their use, we present examples drawn from both galactic and Solar System dynamics.
The probability of capture for generic shapes of the potential well is calculated.

A number of predictions are made. First, there are barred galaxies that possess
two outer rings of gas and stars (type R

′

1
R

′

2
). We show how to relate changes in the

pattern speed and amplitude of the bar to the strength of the two rings. Secondly,
under certain conditions, small disturbances can lead to dramatic changes in orbital
shape. This can be exploited as a mechanism to pump counter-rotating stars and gas
into the nuclei of disk galaxies. Tidal resonant forcing of highly inclined orbits around
a central mass causes a substantial increase in the likelihood of collision. Thirdly, the
angular momentum of a potential well is changed by the passage of stars across or
capture into the well. This can lead to the creation of holes, notches and high velocity
tails in the stellar distribution function, whose form we explicitly calculate.

Key words: celestial mechanics, stellar dynamics – galaxies: kinematics and dynamics
– galaxies: structure – Solar system: general – planets and satellites: individual: Pluto

1 1 INTRODUCTION

Stars within galaxies belong to orbital families. The size
and shape of a galaxy determines the relative populations
of these families. As a galaxy evolves, capture and escape
of stars between these families takes place. So, capture and
escape are generic processes that will have occurred many
times in the history of galaxies.

Each orbital family has a parent periodic orbit – that
is, an orbit that describes a closed figure. For example, in a
spherical galaxy, all stars belong to the family of tube orbits
whose members librate around the closed circular orbits. An
oval distortion in the centre of this galaxy is supported by
the family of box orbits, whose parent periodic orbits are the
radial orbits. As the distortion grows, stars are transferred
from the loop to the box family. This capture process is im-
portant in the formation, maintenance and secular evolution
of non-axisymmetric structures, such as bars, rings and spi-
ral arms (e.g., Lynden-Bell 1973; Kalnajs 1973; Tremaine
& Weinberg 1984). Whether or not a trapped star remains
trapped may depend on the presence of a central black hole
or mass concentration. Close passage can scatter a star away
from its original orbit and thus cause a gradual disruption
of the population of orbits.

Let us turn to some specific problems. First, some
barred galaxies, such as NGC 5701, possess two outer rings
of gas and stars. Buta (1986), who labels these galaxies

R
′

1R
′

2, suggests that they may be comprised of stars on pe-

riodic orbits aligned and anti-aligned with the bar. As the
bar evolves, is it possible for stars to be exchanged between
the rings? Second, counter-rotating gas is present in some
S0 and spiral galaxies (Bertola, Buson & Zeilinger 1992).
For example, the ‘evil-eye’ galaxy NGC 4826 has an outer
HI ring, which is counter-rotating, whilst its interior gas
is co-rotating (Braun, Walterbos & Kennicutt 1992). Re-
cently, substantial counter-rotating gas has also been re-
ported in the spiral NGC 3626 (Ciri, Bettoni & Galletta
1995). A counter-rotating component is perhaps unsurpris-
ing if the galaxy has suffered a retrograde merger or has un-
dergone substantial secondary accretion or infall. We shall
show that counter-rotating gas and stars are susceptible to
large-scale orbital shape changes under resonant perturba-
tion. This provides a mechanism for feeding gas into the
centres of galactic nuclei. In a classic paper, Tremaine &
Weinberg (1984) consider the origin of frictional torques in
stellar systems, showing the crucial rôle played by the trans-
fer of stars across the resonances. The shape of the effective
potential well at the resonance determines the dynamics of
this process. This in turn is very sensitive to orbital shape.
We consider cases in which this can lead to marked changes
in the stellar distribution function, including the formation
of holes and notches.

The aim of our paper is to shed light on these matters.
This is made easier if we have a simple, physical picture of
resonant escape and capture, which we provide in Section 2.
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Figure 1. The solid lines represent the reticulation of the J-plane by (ℓ, m) resonances defined by the closure conditions [equations
(2.1) and (2.6)]. The broken lines are the allowed fast action paths. They intersect a particular resonance line with the same gradient
independent of the pattern speed. In the upper panel, the background potential is an axisymmetric Binney disk [equation (2.13)] and
the pattern speed is taken as 0.1 (in units in which v0 = Rc = 1). The lower panel shows the effects of removing the harmonic core and
reducing the pattern speed. The background model is an axisymmetric Mestel disk and the pattern speed is 0.075.

2 2 THE EQUIACTION SECTION

Stellar orbits in a galactic disk nearly always form rosettes.
Occasionally, the radial frequency κ and the angular fre-
quency Ω of the star are commensurable, i.e., ℓκ = mΩ for
some integers ℓ,m. Then, the star’s orbit is periodic and it
closes after m radial librations and ℓ turns around the cen-
tre. Even if the orbit is a rosette, it can be made to close by
moving to a rotating frame. To an observer rotating steadily
in space with angular velocity Ωp, an orbit is closed if

ℓκ = m(Ω − Ωp). (2.1)

An orbit meeting this condition is resonant. Why are the res-
onant orbits so important? Suppose a disturbance rotating
at angular frequency Ωp is applied to the disk. On each tra-
verse, the resonant stars meet the crests and troughs of the
perturbation potential at the same spots in their orbits and
this causes secular change in the orbital elements. The non-
resonant stars feel only periodic fluctuations that average
to zero. As the strength of the perturbation increases, stars
near the locus of exact resonance are captured into libration
around the parent periodic orbit. So, the neighbourhoods of
the resonances are the regions of a galaxy where a distur-

bance can produce long term effects by changing populations
of orbital families.

Near a resonance, the star’s motion can be nicely decou-
pled into two disparate timescales – fast and slow oscillations
(e.g., Born 1927; Lynden-Bell 1973; Tremaine & Weinberg
1984). The orbital motion is then pictured as the fast traver-
sal of a closed figure together with the slow libration of its
line of apsides. Let (R,φ) be polar coordinates in an axisym-
metric galactic disk. Associated with the two periodic mo-
tions in radius and azimuth on our rosette orbit are actions
(JR, Jφ) and angles (wR, wφ) (see e.g., Born 1927; Arnold
1978). One useful property of the actions is their adiabatic
invariance under slow dynamical change. The Hamiltonian
H0 of stars in the axisymmetric disk is a function of the
actions alone. The frequencies κ and Ω are simply given by

κ =
∂H0

∂JR
, Ω =

∂H0

∂Jφ
. (2.2)

Near a resonance – where a combination of these frequencies
is close to the forcing frequency (2.1) – the adiabatic invari-
ance of (JR, Jφ) breaks down. Nevertheless, there is a linear
combination of actions, specific to each resonance, that is
preserved, namely the circulation

∮

pdq around the closed
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negative inertia positive inertia

Figure 2. The sign of the inertial response of the stellar orbits
may be deduced from the intersection of the resonance lines and
the fast action tangent paths. The tangents to the broken lines
give the local evolutionary tracks. In the left panels, Ωp decreases
as Js increases (negative inertia); in the right panels, Ωp increases
as Js increases (positive inertia). It is evident on comparison with
Fig. 1 that regions of negative inertial response are preponderant.
Positive inertial response, however, occurs for the negative angu-
lar momentum continuation of the (1, 4) resonance for the Binney
disk, as well as at the inner Lindblad resonance (1, 2) for the Mes-
tel disk.

figure. This is the fast action. In order to exploit this in-
variant, we perform at each resonance a separate canonical
transformation to the corresponding slow and fast actions
(Js, Jf) and angles (ws, wf). This is effected by the gener-
ating function S(Js, Jf ;wR, wφ, t) (e.g., Lynden-Bell 1973;
Tremaine & Weinberg 1984; Earn 1993)

S(J,w) = Js

[

wφ − ℓ

m
wR −

∫

Ωpdt
]

+ wRJf , (2.3)

so that

∂S

∂wφ
= Jφ = Js,

∂S

∂Js

= ws = wφ − ℓ

m
wR −

∫

Ωpdt,

∂S

∂wR
= JR = Jf −

ℓ

m
Jφ,

∂S

∂Jf

= wf = wR,

∂S

∂t
= −ΩpJs.

(2.4)

Therefore, the fast and slow actions are

Jf = JR +
ℓ

m
Jφ,

Js = Jφ.
(2.5)

When the angular momentum changes sign, the resonance
condition is altered (Kalnajs 1977)

(m− ℓ)κ = m(Ω + Ωp), (2.6)

where all the frequencies are taken as positive. The func-
tional form of the fast and slow actions now becomes

Jf = JR − ℓ

m
|Jφ| + |Jφ|,

Js = Jφ.
(2.7)

The fast action is continuous at Jφ = 0, even though its func-
tional dependence on J has changed. Kalnajs (1977) gives a
beautiful illustration of this point in terms of the zero an-
gular momentum orbits which are the common limits of the
(ℓ,m) and (−ℓ−m,m) orbits.

The reticulation of the J-plane by the lines of exact
(ℓ,m) resonance is shown in Fig. 1. The principal resonances
are marked. The tangents to the broken track correspond
to allowed dynamical paths because they conserve the lo-
cal value of the fast action as prescribed by equation (2.5).
A star trapped at a resonance oscillates along this tangent.
The set of all these line elements crossing a resonance con-
stitute a band of trapped stars, The shape and width of this
band depends on the amplitude of the perturbation and the
figure of the orbit. Together they determine an effective po-
tential well in which the oscillation takes place. To construct
this well, we examine the Hamiltonian of the orbits in the
rotating frame.

H =H0(J) +
∂S

∂t
+Hp(J,w, t)

=H0(J) − ΩpJs +Hp(J,w, t).
(2.8)

where Hp represents the perturbation. Averaging this
Hamiltonian over the fast motion leads to the following
equations of motion

dJs

dt
= − ∂〈H〉

∂ws

=
∂〈ψ〉
∂ws

,

dws

dt
=
∂〈H〉
∂Js

= Ω(J) − ℓ

m
κ(J) − Ωp − ∂〈ψ〉

∂Js

,

(2.9)

where the perturbation potential ψ can be expanded as a
Fourier series over the harmonics

〈ψ〉 =

∞
∑

m=−∞

Am(J, t) exp(imws). (2.10)

The angled brackets in equations (2.9) and (2.10) denote
averages over the fast phase. If the perturbation does not
depend explicitly on time, then the Hamiltonian in the ro-
tating frame or Jacobi integral EJ = 〈H〉 is conserved. A
rough idea of the dynamics is obtained by restricting our-
selves to a single harmonic component and expanding about
the exact resonance to obtain the approximate equations of
motion

J̇s = −mAm(J) sinmws, (2.11a)

ẇs = D1(Js − Jr) − ∂Am

∂Js

cosmws. (2.11b)

The slow angle ws measures the inclination of the line of
apsides of the figure in the trough of the well. Equation
(2.11a) illustrates the angular momentum transfer when or-
bit and well are offset. Equation (2.11b) contains the inertial
response of the orbit D1 defined as

D1 =
∂2H0

∂J2
s

=
∂Ωp

∂Js

. (2.12)
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Figure 3. An equiaction section at co-rotation in the cored logarithmic model. The central seam (drawn in a broken line) represents
the unperturbed Hamiltonian in the rotating frame. The upper and lower boundaries represent the full values of the Hamiltonian at the
crests (ws = π/2) and the troughs (ws = 0). The trajectory of every star is a horizontal line on the section. Above the separatrix (dotted
line), the orbits are caught into libration. Below they rotate and an example of a retrograde rotator is marked R. The periodic orbits
P1 and P2 are recovered at the horizontal tangents. The planforms of the orbits are shown below the section. (The model used is (2.13)
with q = 0.85, Ωp = 0.05, and Jf = 8 in units with v0 = Rc = 1). The bar axis is horizontal.

This is analogous to the reciprocal of the moment of iner-
tia of a rigid body. Near-resonant orbits have the curious
property that their angular inertia depends on the forcing
frequency. The inertial response of an orbit is positive when
its angular velocity is increased by an applied torque as the
fast action is held fixed. Any orbit will have a different iner-
tial response at different pattern frequencies because the fast
action changes. Let us remark that we are following the no-
tation of Tremaine & Weinberg (1984) in writing Dn as the
nth derivative of Ωp with respect to Js. Earn & Lynden-Bell
(1996; see also Earn 1993) refer to D1 as the cooperation
parameter in their studies of disc models which have regions
of both positive and negative inertial response.

Fig. 2 shows how the inertial response of orbits can be
deduced from the intersections of the fast action tangents
with the resonance lines. When the resonance line and fast
action tangent are nearly parallel, the orbit possesses very
large inertia and is able to move some distance along the
tangent without moving far from exact resonance. The gra-
dient term in (2.11b) will be of particular importance when
we investigate the capture and release of resonant orbits in
section 3.

We shall examine the trajectories of equations (2.9) in a
slice through phase space at constant fast action. These sur-
faces we call equiaction sections (Evans & Collett 1994; Col-
lett 1995). The effective potential well takes different forms
in different sections. We now consider specific examples of
such sections at the three principal resonances – the co-
rotation (0, 2) and the inner and outer Lindblad resonances
(±1, 2). Low order resonances are the most important be-
cause the resonant orbits display the most marked devia-
tions from axisymmetry and therefore couple most strongly
to simple non-axisymmetric patterns.

The equiaction sections can be compared to Poincaré
surfaces of section (see e.g., Gutzwiller 1990). These have
been used extensively, for instance, by Contopoulos and col-
laborators to map the orbital structure of bar-like poten-
tials (e.g., Contopoulos & Papayannopoulos 1980). Our in-
terest here is in time-dependent problems and the equiac-
tion sections have the advantage that the changes in orbital
families are more clearly depicted. Donner (1979) drew di-
agrams reflecting the pendulum-like solutions of the equa-
tions (2.9) very close to the exact resonance. These are re-
lated to equiaction sections, but the trajectories of stars were
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Figure 4. When the pattern speed changes, the position of ex-
act resonance moves along the section. The first panel shows the
equiaction section for the Binney disc with q = 0.9,Ωp = 0.01 and
Jf = 10. The second panel is the section taken at the same value
of the fast action, but with the higher pattern speed Ωp = 0.0145.
In this example, the section becomes flatter as the pattern speed
is increased. This makes the box orbits fatter.

parabolae rather than the straight lines here.

2.1 2.2 Co-rotation (ℓ = 0) resonance

At co-rotation, the resonant orbits are, for near-circular or-
bits, Lindblad epicycles. Their small size means that they
can feel a significant orbit-averaged potential (because they
sample the perturbing potential in a small patch). This di-
minishes as the orbit becomes larger, except when the per-
turbations has the same symmetry as the orbit. The con-
served fast action is the radial action [see equation (2.5)] – in
Fig. 1, the fast action tangents that intersect the (ℓ = 0) res-
onance line are horizontal. When we draw an equiaction sec-
tion, we extend this tangent and then make our cut. When
the cut reaches Jφ = 0, it changes direction in accord with
the new fast action (2.7).

In our dynamical model, the underlying Hamiltonian
H0 is that of the axisymmetric cored Mestel (1963) disk.
The rotating disturbance, Hp, is a pure m = 2 component,

so that

H =H0 +Hp = 1
2
p2

R + 1
2

p2
φ

R2
+ 1

2
log(R̃2

c +R2)

+ ǫ
R2

R̃2
c +R2

cos 2(φ−
∫

Ωpdt).

(2.13)

When ǫ = (1−q2)/(1+q2) and R2
c = 1

2
R̃2

c(1+q−2), then the
entire Hamiltonian replicates the weakly non-axisymmetric
rotating Binney disk (see Binney 1982; Binney & Tremaine
1987, p. 126)

H = 1
2
p2

R + 1
2

p2
φ

R2
− Ωppφ + 1

2
log(R2

c + x2 + y2q−2). (2.14)

The density corresponding to the potential (2.13) is positive
for 0 ≤ q ≤ 1. Using this Hamiltonian, a typical equiac-
tion section is drawn at co-rotation in Fig. 3. The central
seam is the unperturbed Hamiltonian in the rotating frame,
H0(J)−ΩpJs. The curvature of the central seam has a simple
physical interpretation. When the curvature is downward,
as it is rightward of point X1 in Fig. 3, then the inertial
response (2.12) is negative. The envelope of the equiaction
section is drawn by finding the orbit-averaged perturbation
potential, 〈ψ〉. This provides the effective potential within
an equiaction section. (A simple mechanical model of this is
provided by the jointed arm of Appendix A). For each orbit,
〈ψ〉 is computed in the particular rotating frame in which
the orbit closes. Since orbits conserve the Jacobi integral in
the frame of the perturbation, they are horizontal lines on
an equiaction section, internal to and bounded by the en-
velope. The shape of the envelope governs the range of the
angular momentum exchange of each orbit with the pertur-
bation. The periodic orbits P1 and P2 are recovered at the
horizontal tangents and experience no angular momentum
exchange. These orbits bifurcate, or split, from the position
of exact resonance, which corresponds to the maximum of
the central seam. The splitting of the orbits is obtained from
(2.9) as

∆Js = 2
∂〈ψ〉
∂Ωp

. (2.15)

P2, though at a maximum of the effective potential, is stable
in the sense that orbits close by librate about it. P1 is unsta-
ble for it will, if disturbed, either rotate if it loses energy or
perform a large amplitude libration about P1 if it gains en-
ergy. The dotted horizontal line is a separatrix, above which
the stars are trapped. Below the separatrix, the orbits are
retrograde rotators to the right (an example of which is the
horizontal line labelled R) and prograde rotators to the left.

The capture and scattering between orbital families de-
pends critically on the shape of the envelope close to the res-
onance. Particularly interesting dynamics can occur when
the resonance lies close to points at which the envelope
crosses or meets the seam (when the gradient term in (2.11)
becomes important). There are three cases of special inter-
est:
(1) U points, where the envelope terminates on the seam
at a point corresponding to the circular orbit Jcirc and the
amplitude Am is proportional to |J − Jcirc|1/2,
(2) V points, where the envelope terminates on the circular
orbit, but the amplitude Am is now proportional to |J−Jcirc|,
(3) X points, where the envelope crosses the seam and Am ∝
|J − Jcirc|.
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Figure 5. (a) The closed orbit of Pluto in the frame co-rotating with the mean motion of Neptune is shown. The time interval between
the plotted points is ∼ 4, 500 days. The axis of the line of apsides librates with an amplitude of ∼ 38◦. (b) The present-day equiaction
section of Pluto. Pluto has worked its way rightwards along the section as Neptune’s orbit expanded. (c) A detail of the resonant part of
the section. The dashed lines show the dependence of the energy on the orientation of the figure. They correspond to inclination angles
of 15◦, 30◦, 45◦, 60◦ and 75◦ of the line of apsides. The influence of many harmonics in the potential is evident in the dispersal of these
contours. The present day orbit of Pluto is shown as a bold horizontal line. (d) A detail of the tip of the section when the radius of
Neptune was ∼ 82% of its present value and Pluto was trapped from a near-circular orbit. At the initial capture, the m = 2 component
in the perturbing potential was dominant, as indicated by the symmetric placing of the dashed lines. [All the equiaction sections are
drawn with Jf = −0.518 in units with G = M⊙ = rN = 1].

In Fig. 3, we see three points where the orbit-averaged
potential vanishes. The leftmost point of the equiaction sec-
tion is a V-point and corresponds to a circular orbit. Fur-
ther along the equiaction section, the orbit-averaged poten-
tial changes sign twice. These crossing points are X-points.
The occurrence and position of X-points depends on the ra-
dial form of the perturbation potential encountered by the
eccentric orbits along the section. X-points are particularly
common for minor resonances where the orbital shape is
quickly changing. The dynamics close to an X-point, and its
consequences for angular momentum transport, are explored
in Section 3.1.

2.2 2.3 Inner (1, 2) and Outer (−1, 2) Lindblad
resonance

Fig. 4 shows equiaction sections for an inner Lindblad reso-
nance (ILR). The form of the sections here is of particular
interest because, amongst the principal resonances, the in-
ner Lindblad resonant frequencies are the most slowly vary-

ing with radius in galaxies. The curvature of the central
seam may now be upward corresponding to positive inertial
response. The figure presents a pair of equiaction sections
showing the orbital families associated with a decelerating
bar. The trough of the well is in each case represented by
the lower boundary of the section, the crest of the well by
the upper boundary. As the pattern speed increases, the po-
sition of exact resonance moves rightwards (as the inertial
response is positive). This is indicated by the arrow. In the
lower panel, the end of the section is markedly flatter, show-
ing that the angular momentum and orbital shape varies
substantially during a libration.

The envelope closes with a characteristic tip, labelled U
on the figure. This is different from the V-tip found at co-
rotation. Although it is often the case in dynamics that libra-
tors are divided from rotators by a separatrix, or oscillation
of infinite period, this does not necessarily happen close to
these tips. The dividing line between the rotators and libra-
tors runs through the circular orbit. The escape from trap-
ping occurs through the circular orbit, on which the torque
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vanishes. An example of this class of trapped motion is pro-
vided by the Galilean satellites, Io, Europa and Ganymede.
Europa is at ILR with respect to Io and Ganymede at ILR
with respect to Europa. This configuration is maintained by
the small eccentricity stabilisation mechanism (e.g., Lynden-
Bell & Kalnajs 1972; Peale 1976; Goldreich & Tremaine
1981; Binney & Tremaine 1987, p. 151), in which the eccen-
tricity forced upon the near-circular orbit leads to the en-
snaring torque. A mechanism such as tidal torquing – which
circularises the periodic orbit by pushing it towards the end
of the tip – weakens the coupling of the satellites.

An example of the class of trapped motion in which
there is a separatrix is provided by Neptune and Pluto (the
large eccentricity stabilisation mechanism of Peale (1976)).
Pluto’s eccentric orbit forms an almost closed figure in the
frame of Neptune’s mean motion (Cohen & Hubbard 1965;
see also Fig. 5(a)). Pluto lingers in “the ears” of the orbit and
the net torque then tries to align the major axis of the orbit
with Neptune’s position. This is an outer Lindblad resonance
(ℓ = −1,m = 2). In order to draw an equiaction section for
this problem, the point mass perturbation from Neptune
must be time-averaged around the closed figure of Pluto.
The potential contains many more components than the sin-
gle harmonics considered above. The monopole merely con-
tributes a constant to the orbit-averaged potential, whereas
the dipole vanishes if the centre of mass does not move.
Neptune is effectively replaced by two masses 1

2
MN placed

at the radius of Neptune’s orbit rN and arranged fore and aft
of the sun. Fig. 5 shows the full equiaction section for Pluto
and two expanded details. Note that in the outer Lindblad
resonant sections, the curvature of the central seam is down-
ward, reflecting the negative inertial properties of the stars
in a Keplerian potential. The upper and lower boundaries of
the section now generally correspond to the trough and the
crest of the potential well, reversing the roles they had at the
inner Lindblad resonance. This is obvious from Fig. 5(a), as
Pluto’s averaged potential is most negative when the long-
axis of its orbit is aligned with the trough of the well and so
the “ears” are aligned with the crest.

Malhotra (1993) has suggested that Pluto was initially
captured from a near-circular orbit. As Neptune was driven
outwards by planetisimal expulsion, Pluto’s orbit expanded
but remained trapped. It moved rightwards along the sec-
tion and its eccentricity increased. Its initial and present
positions on the section are illustrated in the details. They
are calculated by taking the present day eccentricity of Pluto
as 0.25 (Allen 1973). In units in which rN = G = M⊙ = 1, it
follows that the conserved fast action of Pluto Jf = −0.517.
Fig. 5(b) shows the complete equiaction section of Pluto. Its
thinness is in striking contrast to the earlier sections deal-
ing with galactic resonances. This graphically illustrates one
of the important differences between celestial mechanics and
galactic dynamics. Non-axisymmetric disturbances in the so-
lar system are comparatively feeble. Fig. 5(c) is an expanded
detail of the resonant portion of Fig. 5(b). The bold horizon-
tal line shows the present-day orbit of Pluto, showing the 38◦

amplitude of libration of the line of apsides (Cohen & Hub-
bard 1965). The dashed lines show the dependence of the
averaged potential on the relative orientation of the figure
of Pluto and Neptune. In its present position, the influence
of many harmonics is clear in the asymmetrical dispersal
of the contour lines. If Pluto was captured from a circular

orbit, then – assuming the constancy of the fast action –
this must have occurred when the radius of Neptune’s orbit
was 24.6 AU, or 82% of its present value. Fig. 5(d) shows
the point of capture. Note that when the resonance is near
the circular orbit, the perturbation is dominated by a single
m = 2 harmonic. This process is reversible, so that were
Neptune’s orbit to contract, Pluto’s eccentricity would be
reduced. This will be true, too, of galactic stars, as a mas-
sive black hole slowly descends into the galactic centre. Stars
on eccentric orbits may be caught as the resonance moves to
a region of greater frequency and released at smaller eccen-
tricities when the amplitude contracts and the curvature of
the section decreases. Indeed, each star may pass through a
succession of resonances during this process, so that its mo-
tion in the J-plane approximates to a series of small linear
steps, parallel in each case to the appropriate fast action.

3 3 CAPTURE AND ESCAPE

Suppose Neptune’s orbit continues to expand. Will Pluto re-
main trapped forever? Provided the evolution remains adi-
abatic, it is the shape of the section that describes the ulti-
mate fate of Pluto. Two changes occur in the section. First,
the position of exact resonance moves outwards and the cur-
vature of the section is correspondingly decreased. Second,
the restoring torque diminishes and the envelope constricts.
Both effects lead to a slow increase in the amplitude of li-
bration and eventually Pluto may escape from Neptune’s
grasp.

The issues of escape and capture are the subject of our
attention here. The investigation of resonant capture in as-
tronomy begins with Goldreich’s (1965) explanation of the
occurrence and maintenance of commensurable motions in
the solar system. Subsequently, Yoder (1973, 1979) gave a di-
agrammatic method of calculating capture probabilities for
pendulum-like systems, while Henrard (1982) devised a gen-
eral treatment for any problem with one degree of freedom
based upon the use of adiabatic invariants. A comprehen-
sive summary of the classical work is contained in Henrard
(1993).

Suppose a potential well of fixed amplitude has a slowly
changing pattern speed. As each star along the section en-
counters the well, it may be captured or pass across the well
and escape into counter-rotation. Our ignorance of the ex-
act phase at which the star encounters the well’s separatrix
means that we must allocate probabilities to these two mo-
tions. These probabilities reflect the relative growth of the
phase areas associated with the two modes of motion. This
can be deduced from the shape of the separatrix, which in
turn is set by the form of the section. We can distinguish
three regimes which need separate treatment. These are (i)
in the vicinity of an X-point or V-point, (ii) near a U-point
and (iii) in a region of slow variation in the amplitude of
the envelope (e.g., such as close to P1 in Fig. 3). Of course,
capture probabilities have been calculated before in the con-
text of celestial mechanics (e.g., Henrard & Lemâitre 1983;
Borderies & Goldreich 1984). Here, we shall present modi-
fied and generalised forms of these expressions, appropriate
to galactic resonances.
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Figure 6. The upper panel shows the generic features of an equiaction section when a resonance lies close to an X-point. The periodic
orbits P1 and P2 are equally spaced on either side of exact resonance. The separatrix SS′ divides the librating family associated with
P2 from the two sets of rotators – in this case, prograde above P1S′ and retrograde above SP1. As the pattern speed is decreased,
the position of exact resonance moves towards the X-point. A critical point is attained when P1 reaches the X-point. Beyond this, the
equiaction section takes the form shown in the lower panel with both P1 and P2 siring families of librating orbits. Above the dot-dashed
line, the orbits are still rotators. Note that this line divides librators from rotators, but does not correspond to an orbit of infinite period.
It is a pseudo-separatrix. The difference between a separatrix and a pseudo-separatrix is illustrated in the two small boxes. They show
one-dimensional motion in two different double potential wells. When a cusp separates the wells, there is a pseudo-separatrix.

3.1 3.1 Capture Probabilities near X- and
V-points

The Hamiltonian close to an X-Point may be written

H(J,w) = H0(J,w) +A2(J − JX) cos 2w. (3.1)

Here, JX is the critical action corresponding to the X-point
and A2 is a constant describing the amplitude of the well.
Although (3.1) corresponds to the special case of the m = 2
harmonic, our method of derivation is general. When the
position of exact resonance lies close to the X-point, the
Hamiltonian may be Taylor expanded to give

H(J,w) = 1
2
D1(J − Jr)

2 + A2(J − JX) cos 2w. (3.2)

Here, Jr is the point of exact resonance and we assume that
D1 does not vanish, although, of course, it may be either
positive or negative depending on the sign of the inertial
response. Now, we linearly translate the action J → J−JX,
so that the Hamiltonian has the canonical form (dropping
unimportant additive constants)

H(J,w) = 1
2
D1J

2 −D1J(Jr − JX) +A2J cos 2w. (3.3)

There are three parameters in (3.3), namely D1, A2 and the
difference Jr−JX. As this generic problem is invariant under
scaling, we introduce the dimensionless action J̃

J̃ = 1
2

∣

∣

∣

∣

D1

J

A2

∣

∣

∣

∣

. (3.4)

Our problem is now characterised by a single parameter
λ = 1

2
|D1(Jr − JX)/A2|. (When Jr ≈ JX, this is just

1
2
|∆Ω/A2|, where ∆Ω is the offset of the X-point reso-

nant pattern speed). The scaled Hamiltonian is very simple,
namely:

H̃ = J̃2 − 2λJ̃ + J̃ cos 2w. (3.5)

The periodic orbits or equilibria are the fixed points of
Hamilton’s equations. The stable equilibrium has coordi-
nates (J̃ = λ + 1

2
, w = π

2
) and is marked P2 in the upper

panel of Fig. 6. The unstable equilibrium has coordinates
(J̃ = λ− 1

2
, w = 0) and is marked P1. When the position of

exact resonance gets too close to the X-point, the unstable
equilibrium disappears. As it crosses, it becomes a second
stable equilibrium point P1 marked on the lower panel of
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Fig. 6. The behaviour at a V-point is similar to that at an
X-point. If the X-point is stationary, it is an immutable bar-
rier. Stars, however, can pass from one side of an X-point to
another if the X-point itself is in motion, which can happen
when the perturbation’s radial shape changes.

To calculate capture probabilities, we must work out
how the phase area of the trapping region changes along
the section (this is quoted as ‘Kruskal’s theorem’ in Cary,
Escande & Tennyson 1986). So, we need to evaluate the
actions associated with the two branches of the separatrix
SP1 and P1S

′ marked on the upper panel of Fig. 6. The
separatrix is a level curve of the Hamiltonian (3.5). The
value of the Hamiltonian marking the separatrix is (inserting
the action-angle coordinates of P1)

Hsep = −λ2 + λ− 1
4
. (3.6)

The points S and S′ are the two solutions of (3.5) with H =
Hsep and w = π

2
. The actions corresponding to these points

are

J̃S = λ+ 1
2
−

√
2λ, J̃S′ = λ+ 1

2
+

√
2λ. (3.7)

The equation of the separatrix is

J̃(w) = λ− 1
2

cos 2w ± [2λ sin2 w − 1
4

sin2(2w)]1/2, (3.8)

where the negative sign corresponds to the branch SP1 (ret-
rograde rotators when D1 is positive as in Fig. 6, prograde
rotators when D1 is negative) and the positive sign to the
branch P1S

′ (prograde rotators when D1 is positive, ret-
rograde rotators when D1 is negative). It is now straight-
forward to evaluate the actions of the trapped orbit and
the prograde and retrograde rotators near the separatrix of
Fig. 6. This leads to the phase areas enclosed by these orbits:

Sret = λ acos
(

1√
2λ

)

− 1
2
(2λ− 1)1/2,

Sprog = πλ− λ acos
(

1√
2λ

)

+ 1
2
(2λ− 1)1/2,

Strap = πλ− 2λ acos
(

1√
2λ

)

+ (2λ − 1)1/2.

(3.9)

To calculate capture probabilities, we find out how these
three areas change under infinitesimal variations of the pa-
rameter λ. They are constrained by the conservation of
phase area, so that here

dStrap

dλ
=
dSprog

dλ
− dSret

dλ
= 0. (3.10)

The general expression for the capture probability is pro-
vided by Henrard (1993) as:

P =

dStrap

dλ
dStrap

dλ
+
dSret

dλ

=

dSprog

dλ
− dSret

dλ
dSprog

dλ

. (3.11)

For the problem at hand, the probability of capturing a pro-
grade rotator becomes

P =

π − 2 acos
(

1√
2λ

)

π − acos
(

1√
2λ

) =
2

1 +
π

2 asin( 1√
2λ

)

. (3.12)

Note that 1/2 < λ <∞. Using different methods and within
the context of celestial mechanics, this formula was derived

for capture at a V-point by Yoder (1973). We have shown the
same result is valid for capture at an X-point. The difference,
however, is that the periodic orbit P1 disappears at a V-
point, but crosses and sires a librating family at an X-point.

3.2 3.2 Capture Probabilities near U-points : The
Two Ring Problem

A V-point is obtained, for example, when a (−1, 1) resonant
orbit is subjected to a pure m = 2 harmonic. In a pertur-
bation which shares the lop-sided (m = 1) symmetry of the
orbit, the section possesses a U-point. In the first case, 〈ψ〉
depends on the square of the eccentricity e2; in the second
case, 〈ψ〉 ∝ e. This is evident in Fig. 5(d), where the end
of the section is dominated by the m = 2 component. Gen-
erally, we will find a U-point for any near-circular resonant
orbit in the presence of a perturbation with the same sym-
metry.

As the methods of derivation are the same as in the
previous section and the result is well-known in celestial
mechanics, we shall just quickly sketch the theory before
passing on to applications. The Hamiltonian in the rotating
frame near the U-point is

H(J,w) = H0(J,w) +A2|J − Jcirc|1/2 cos 2w, (3.13)

where Jcirc is the action of the circular orbit at the very
tip. On Taylor expansion about the resonant action Jr, this
yields the Hamiltonian:

H(J,w) = 1
2
D1(J − Jr)

2 + A2|J − Jcirc|1/2 cos 2w. (3.14)

By defining scaled action-angle coordinates,

J̃ = 21/3

∣

∣

∣

D1

A2

∣

∣

∣

2/3

|J − Jcirc|, w̃ = w/2. (3.15)

the Hamiltonian can be cast into Henrard’s (1993) form

H̃ = J̃2 − 2λJ̃ − 2(2J̃)1/2 cos w̃, (3.16)

where

λ = 21/3

∣

∣

∣

D1

A2

∣

∣

∣

2/3

|Jr − Jcirc|. (3.17)

It is useful to introduce the canonical coordinates

x = (2J̃)1/2 cos w̃, y = (2J̃)1/2 sin w̃, (3.18)

so that the scaled Hamiltonian becomes

H̃ = 1
4
(x2 + y2)2 − λ(x2 + y2) − 2x. (3.19)

The equilibria satisfy

x3 − 2λx− 2 = 0, y = 0. (3.20)

The three roots of the cubic correspond to two stable and one
unstable equilibria. The coordinates of the unstable fixed
point are:

xu = −
(

2λ

3

)1/2

(cos∆ +
√

3 sin ∆), yu = 0, (3.21)

where ∆ is defined as

∆ = 1
3

acos
(

3

2λ

)3/2

. (3.22)

For convenience, let us define x⋆ = −xu. This quantity will
play an important rôle in what follows, so let us explicitly
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Figure 7. The anti-aligned (R1) and aligned (R2) periodic orbits
when a resonance lies close to a U-point. These orbits build the
two rings in R

′

1R
′

2 galaxies. The unstable periodic orbit P divides

the separatrix (drawn as a dotted line) into two unequal branches
SP and PS′. Above R1, there is a pseudo-separatrix – shown as
a dot-dashed line. Although this divides librators from rotators,
it does not correspond to an orbit of infinite period.

note that it is always related to the scaled action of the
unstable fixed point J̃u by

J̃u = 1
2
x2

⋆. (3.23)

If we choose D1 < 0, then the separatrix looks like that
of Fig. 7 with retrograde rotators below PS′ and prograde
rotators below PS. Then, by evaluating the actions of these
two branches of the separatrix, we find:

Sret = πλ+ 2λ asin(x−3/2
⋆ ) +

3(x3
⋆ − 1)1/2

x⋆
,

Sprog = πλ− 2λ asin(x−3/2
⋆ ) − 3(x3

⋆ − 1)1/2

x⋆
,

Strap = 4λ asin(x−3/2
⋆ ) +

6(x3
⋆ − 1)1/2

x⋆
.

(3.24)

Obviously, the area of the trapping region increases away
from the tip. The probability of capturing a retrograde ro-
tator is

P =
2

1 +
π

2 asin(x
−3/2
⋆ )

. (3.25)

This result was previously obtained by Yoder (1973) and
Henrard & Lemâitre (1983). Although the final expression
is quite complicated, the important point is that the capture
probability is a monotonically decreasing function of λ. As
we move away from the tip, the area of the trapping region
increases but its rate of swelling diminishes.

A problem which involves analysis at the U-point is that
of the two outer rings. Some barred galaxies like NGC 5701
or A1340.6-2541 possess two outer rings of gas and stars

(see figures 2 and 5 of Buta 1986). Can stars be transferred
between the rings? As the pattern speed or the amplitude
of the bar changes, which one of the two rings grows?

Fig. 7 shows an equiaction section at outer Lindblad
resonance. The innermost ring is built from stars moving on
periodic orbits oriented at right angles to the trough of the
potential well (such as R1 on Fig. 7). Likewise, the outer-
most ring corresponds to stars moving on aligned periodic
orbits R2 (see e.g., Athanassoula et al. 1982; Athanassoula &
Bosma 1985). Suppose the pattern speed is diminished. As
the inertial response is negative, the position of exact res-
onance moves outward (to higher angular momentum and
therefore rightwards on the equiaction section). This is indi-
cated by the arrow on Fig. 7. Then, the region of retrograde
rotators (below PS′) shrinks in size, while the region of pro-
grade rotators (below SP) increases. As a retrograde rotating
star reaches the separatrix, it may be captured into libra-
tion or escape into the region of prograde rotation. There
is no transference of trapped stars to prograde rotators, as
the well is growing and the adiabatically invariant action
binds stars deeper with the separatrix. In other words, all
the transitions are from retrograde rotators to trapped stars
or to untrapped prograde rotators. This is reversible, so that
if the pattern speed is increased, then all the transitions are
from trapped stars or prograde rotators to retrograde rota-
tors. This has the interesting consequence that stars cannot
pass directly from libration about R1 to libration about R2,
and vice versa. There is no direct exchange of stars from
one ring to the other. Stars from R1 pass straight across the
trapping region and end up untrapped, their eccentricities
increased and rotating in the opposite sense.

The bar can also grow or fade in strength. The effects of
such changes are equivalent to changes in the pattern speed.
This is because the capture probability (3.25) depends only
on the parameter λ. When λ increases, the numbers of li-
brators and prograde rotators increase at the expense of the
retrograde rotators. When λ decreases, the situation is re-
versed. From the definition (3.17), we see that λ increases
if

−Ω̇p

2|D1|(Jr − Jcirc)
− Ȧ2

3A2

+
Ω̇pD2

3|D1|3
> 0, (3.26)

where D2 = ∂2Ωp/∂J
2
s . The final term on the left-hand

side of (3.26) is of higher order than the remaining two and
may be neglected. So, we deduce that increasing the pattern
speed Ωp or the bar strength A2 both cause λ to diminish.
Notice this gives a seemingly paradoxical result. As the bar
grows, the numbers of trapped stars diminish! Normally, we
expect growth of a potential well to enhance the probability
of capture. This does not happen here because the U-point
geometry tightly constrains the possible change in the phase
space area of the trapped stars. So, if the bar is speeding up
or increasing in strength, both the rings fade. Conversely, if
the bar is slowing down or dissolving, both the rings grow.

There is one further deduction we can make. The cap-
ture probability (3.25) is a monotonic decreasing function of
λ. So, for strong bars, the aligned outer ring is expected to be
the most prominent. For weak bars, the anti-aligned ring is
the dominant one. Although the sample is admittedly small,
this appears to be borne out by a visual examination of fig-
ure 5 of Buta (1986). In the more weakly barred galaxies
NGC 1291 and A0621.9-3211, the anti-aligned ring is more
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conspicuous, whereas in the more strongly barred galaxy
A1056.3-4619, the aligned ring is the brightest. As the ob-
servational evidence is suggestive rather than convincing, it
would be interesting to test this prediction with numerical
simulations.

3.3 3.3 Capture Probabilities at Non-Singular
Points along the Envelope

In the previous examples, the scaling means that changes
in pattern speed and amplitude are coupled. At a general
point on the envelope, where the gradient term in (2.11) is
less important, we have to consider their variations indepen-
dently.

A rotating star can be captured into libration when the
envelope of the section changes shape. Let us first consider
the case when the trapping region is both moving and grow-
ing, but the lobe of the separatrix is symmetric. The Hamil-
tonian is

H = 1
2
D1Ĵ

2 − A2(1 + αt) cos 2w, (3.27)

where Ĵ = J − Jr(t) is the action measured with respect to
the point of exact resonance. The amplitude A2 is taken as
positive without loss of generality, but the inertial response
D1 may have either sign. The parameter α describes the
steady expansion of the envelope. The resonant action is
also assumed to be changing slowly and linearly with time
like

Jr(t) = Jr(0) − βt. (3.28)

This implies that the pattern speed is slowing down like

Ω̇p = J̇s
∂Ωp

∂Js

= −βD1. (3.29)

The equations of motion are

J̇ = −2A2 sin 2w, ẇ = D1(J − Jr(0) + βt). (3.30)

For the moment, both α and β are assumed small so adia-
batic theory holds.

The separatrix lobe (see Fig. 8) moves downwards and
changes in size. So, the regions P (corresponding to prograde
rotators) and T (trapped orbits) increase in size, whereas the
region R (retrograde rotators) diminishes. Initially, the sep-
aratrix lobe has an area equal to 8|A2/D1|1/2. The change
in this area is just

dStrap

dt
= 4α

∣

∣

∣

A2

D1

∣

∣

∣

1/2

. (3.31)

The change in the area P has two contributions. The first
term describes the increase due to the shifting potential well.
The second term is the diminuition caused by the encroach-
ment of the separatrix lobe T. This gives the formula

dSprog

dt
= πβ − 1

2

dStrap

dt
. (3.32)

Using (3.11), the capture probability is

P =
2

1 +
π

2

β

α

∣

∣

∣

D1

A2

∣

∣

∣

1/2
. (3.33)

If β is negative, then the region T (see Fig. 8) moves upward.
Now, regions R and T increase in size, whereas P shrinks.

Figure 8. A snapshot of phase space corresponding to the Hamil-
tonian (3.27). The plot shows contours of constant energy in the
action-angle plane (J, w). The separatrix lobe (marked T) is mov-

ing down the diagram as well as changing in size. The region R
(retrograde rotators) is shrinking, while the region P (prograde
rotators) is expanding. The position of the separatrix lobe at a
later time – when it has moved and changed shape – is shown in
the dotted line.

The formula (3.33) then gives the probability of capture of
a prograde rotator.

More realistically, we must deal with cases where the
envelope width and the inertia both depend on the action.
In this case, the Hamiltonian is

H = 1
2
D1Ĵ

2 + 1
6
D2Ĵ

3 − (A2 +B2Ĵ)(1 + αt) cos 2w, (3.34)

where Ĵ = J−Jr(t). Now, the separatrix lobe is asymmetric,
as the unstable fixed point is displaced from the stable fixed
point by 2A2/D1 in action. The capture probability can be
deduced by perturbation methods when D2/D1 and B2/A2

are small. We find:

P =
2

1 +
π

2
K
, (3.35)

where

K =
β

α

∣

∣

∣

D1

A2

∣

∣

∣

1/2 1

1 − β
α
(B2

A2

− D2

D1

)
− 3B2D1 −D2A2

6|A2D1|3/2
. (3.36)

Tremaine & Weinberg (1984) have already examined the
case when the potential well is moving but of fixed am-
plitude. Our formula (3.35) reduces to theirs in the limit
α → 0. If D2 is negative, the equiaction section becomes
flatter as we move towards increasing angular momentum.
So, if the well is moving towards high angular momentum,
then the capture probability is enhanced. We can see this in
two ways. As the section becomes flatter, the breadth in an-
gular momentum of the trapping region has been increased.
Equivalently, there is a smaller dispersion in resonant fre-
quency across the section so that outlying orbits are more
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Figure 9. An equiaction section corresponding to the model
Hamiltonian (3.39). The extra harmonic term leads to a boxy
well when Ĵ < 0 and a peaky well when Ĵ > 0. The bunching of

the inner lines show that the action of the branch SP is reduced,
whereas that of the branch PS′ is increased. This explains the
enhanced capture of the boxy well.

readily trapped. If B2/A2 is positive (and the well is mov-
ing towards increasing angular momentum), capture is made
more likely as we are moving to a region of the section of
greater width. In terms of the asymmetry of the separatrix
lobe, it helps to have the larger lobe in the forward direction
of the moving well.

The competition between terms in (3.36) again makes
clear that a growing instability need not be accompanied
by a monotonic growth in the membership of each resonant
family. In other words, although the growth of the well aids
capture, this can be offset by a movement of the resonance to
a pattern speed (and hence orbital shape) in which the orbit
experiences a smaller averaged potential. When the pattern
speed changes, the periodic orbit deduced from (3.30) is ac-
tually offset from the bar potential by 1

2
asin(β/(2A2)). This

is the means by which angular momentum is transferred be-
tween the periodic orbit and the well. This has the following
interesting consequence. Suppose a bar to be composed of
periodic orbits or boxes of small librational amplitude. In a
steady state, the orbits are aligned and mutually provide the
potential in which they sit. When the bar is decelerated at a
rate Ω̇p, then we can anticipate a shear in the orientation of
the orbits – since D1A2 is different for each periodic orbit.
Indeed, this can even lead to escape when D1A2 is small.
If the perturbation is like a pure quadrupole, this condition
may be best satisfied towards the centre of galaxies or at the
end of the bar.

3.4 3.4 Refinements

The formulae presented in the previous sections employed
approximations to the Hamiltonian which we now relax.
Here, we investigate the effects of (1) the deviation of the

Figure 10. After capture, the star falls deeper into the well. The
angular amplitude of libration wlib is plotted against the nor-
malised action J/Jsep. The unbroken line is the m = 2 harmonic

well. The dashed line is boxier (A4 = −0.20) and the dotted line
is peakier (A4 = 0.20).

section width from the canonical form, (2) additional har-
monics in the perturbation potential and (3) spiral waves.

Examination of the exact sections at inner and outer
Lindblad resonance shows that the U-point approximation
is valid in a region very close to the circular orbit. As this
tip constricts, we can use the Hamiltonian:

H̃ = J̃2 − 2λJ̃ − 2(2J̃)1/2(1 − ǫJ̃) cos w̃, (3.37)

which incorporates the contribution from the next order ec-
centricity term. The problem now depends on two param-
eters and does not possess the simple scaling it had previ-
ously, which allowed us to consider pattern speed and growth
changes as equivalent problems. What happens to the cap-
ture probability as a steady resonance sweeps past? It now
becomes:

P = P0(x⋆) + ǫ
π(8 − 5x3

⋆)

4x⋆(x
3
⋆ − 1)1/2( asin(x−3/2

⋆ ) + π/2)2
. (3.38)

Here, the first term P0(x⋆) is the original capture probability
(3.25). A sketch of the derivation of the second term is given
in Appendix B, while x⋆ is defined in terms of the action of
the unstable fixed point by (3.23). This is the same as used
in Section 3.2, but of course the position of the unstable
fixed point itself has moved in the perturbed problem. Note
that x⋆ > 1 + 2ǫ, so that the singularity in the second term
in (3.38) never occurs in physical applications where the tip
constricts. The probability of capture close to a U-point can
be either increased (if x⋆ < 2/51/3) or decreased (if x⋆ >
2/51/3), assuming ǫ is positive. When x⋆ is large, the width
of the envelope of the section becomes more uniform and the
phase area of the trapped orbits changes more slowly. When
x⋆ is small, the unstable fixed point lies close to the tip. The
perturbing term has a larger relative influence on shrinking
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the area near the tip than the area of trapped orbits – and
so the capture probability is increased.

More serious, perhaps, is the neglect of higher harmonic
terms. This was already clear in the analysis of the Pluto-
Neptune system in Section 2.3. As the perturbation grows
in size or the orbit becomes more eccentric, the influence
of the higher harmonics becomes more important. This can
manifest itself in two ways – first, by changing the capture
probability, and second, by modifying the response density
contributed by the captured star. The effect of the harmonics
is different at the three régimes of the equiaction section.
The simplest régime to consider is at a general point on the
section, where the Hamiltonian may be approximated by

H = 1
2
D1Ĵ

2 −
[

A2 cos 2w +A4Ĵ cos 4w
]

, (3.39)

where A4 is assumed small and positive. The corresponding
section is illustrated in Fig. 9. The capture probability –
which would vanish in the absence of the higher harmonic
term – is now

P =
16

3π

A4

|A2D1|1/2
, A4D1 > 0, (3.40)

when the well is moved towards the boxy part of the sec-
tion (Ĵ < 0). The probability remains zero when the well is
moved in the opposite direction – indeed, now trapped stars
seep out of the well. This may be understood on recalling
the result of Section 3.3, namely that capture is enhanced
by having the larger lobe in the forward direction of the
moving well. Armed with this result, we may be tempted
to believe that boxy wells always aid capture. This is not
the case, as we shall now show. At the U-point, the second
harmonic gives a contribution that goes like the square of
the eccentricity. So, the U-point Hamiltonian is modified to:

H̃ = J̃2 − 2λJ̃ − 2(2J̃)1/2 cos w̃ − µJ̃ cos 2w̃, (3.41)

which effectively introduces an octopole into the bisymmet-
ric wave. The calculation is outlined in Appendix B and the
result for the capture probability is:

P = P0(x⋆) + µ
πx⋆(x

3
⋆ − 1)1/2

6( asin(x
−3/2
⋆ ) + π/2)2

. (3.42)

Surprisingly, when the well is sharpened (µ > 0), the prob-
ability of capture is enhanced.

The effects of the extra harmonic term on capture can
therefore be quite subtle. Let us now turn to our second
point of how quickly a captured star sinks into the well. We
take the Hamiltonian to be a modified form of (3.27)

H = 1
2
D1Ĵ

2 −
[

A2 cos 2w +A4 cos 4w
]

. (3.43)

After capture, the star descends deeper into the well. The
action of its new libration is again adiabatically invariant.
This can be exploited to give a rough way of assessing when
its response density becomes supportive of the trapping po-
tential. In Fig. 10, the angular amplitude of libration wlib

is plotted against the action of the orbit normalised to the
action of the separatrix J/Jsep. The unbroken line refers to
a pure m = 2 harmonic well, the dashed and dotted lines
to boxier and peakier wells respectively. The peakier well
ingests the star more quickly. The figure makes clear the
relative change in action needed for the star to reinforce the

Figure 11. An equiaction section for a tightly wound spiral wave.
The lines representing the values of the Jacobi integral at constant
azimuth are shown in dotted lines – one is highlighted for clar-

ity. The solid horizontal line is the separatrix. Interestingly, the
separatrix now corresponds to a libration with amplitude greater

than π/2. [The axisymmetric model used is the cored Mestel disk
of Fig. 3. It is subjected to a logarithmic spiral perturbation with
m = 2 and radial wave number α ∼ 17. This corresponds to a
pitch angle of ∼ 83◦, so that the spiral is tight].

perturbation well.
Spiral waves change the section in two ways. First, the

lines of constant slow angle now oscillate within the enve-
lope. Second, the spiral wave effectively shears the potential
in annuli so that the average potential has to be re-computed
for each periodic orbit. It is not hard to see that the first
change within an envelope of fixed shape leaves the capture
probability formulae unaltered. The only modifications we
need to consider are due to the second. The barred potential
of Fig. 3 is replaced by a tightly wound logarithmic spiral
in Fig. 11, viz;

ψp = ǫ
R2

R̃2
c +R2

cos(mφ− α log r). (3.44)

The spiral wave has removed the X-points and – as we shall
see in Section 4.2 – this permits angular momentum trans-
port throughout the section. The Hamiltonian close to exact
resonance may be written as

H = 1
2
D1Ĵ

2 − Am cosm(w − λĴ), (3.45)

where λ is a measure of the spirality and strictly speaking
depends on the fast action Jf . In Fig. 11, the highlighted
line has a positive curvature near the position of exact res-
onance, whilst the envelope of the section has negative cur-
vature. This is characteristic of strong spirality and happens
whenever m|λ2Am/D1|1/2 > 1. There is no distinction be-
tween trailing and leading spiral waves as far as capture and
escape are concerned.
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Figure 12. The upper equiaction section shows the negative an-
gular momentum branch for the corotation resonance. The bold
horizontal line corresponds to a librating orbit that almost reaches

to the galactic centre. The overall flatness of the section means
that small disturbances can lead to large changes in orbital shape.
The lower panel is an equiaction section for Keplerian ellipses sub-
jected to a stationary planar quadrupole. The section is remark-
able for its flatness. The central seam is horizontal manifesting
the degeneracy of the Keplerian orbits.

4 4 APPLICATIONS

4.1 4.1 Large Eccentricity Changes

The equiaction section allows us to find the periodic orbits
on which cold gas settles. As the periodic orbit increases in
eccentricity, it develops self-intersections and can no longer
support a steady gas stream. However, this is not true of
one orbital family, namely the (ℓ = 0, m = 1) family. All the
orbits belonging to this sequence are not self-intersecting.
In principle, gas could be shipped right to the galactic cen-
tre through a continuous series of periodic orbits. This pro-
vides one possible mechanism for fuelling the nucleus with
counter-rotating gas from large radii. Of course, streams of
counter-rotating gas are common in spirals and S0s (e.g.,
Bertola, Buson & Zeilinger 1992). This mechanism is vi-
able if the angular momentum of the periodic orbit changes
markedly under moderate disturbances. This is true of any
resonance possessing a flat section. An example of this is
obvious from Fig. 1, where the (ℓ = 0, m = 1) fast action
tangents are nearly parallel to the resonance lines. This sit-
uation persists over a broad range of pattern speeds. The
m = 1 disturbance couples most strongly to this set of res-
onant orbits and the U-point at its tip ensures that there
are always nearly circular periodic orbits. In an m = 2 dis-
turbance, the tip becomes a V-point, generally without an
associated stable periodic orbit for the gas to sit on. The
only stable periodic orbit is that associated with the mov-
ing resonance and this is capable of moving from circular

Figure 13. The two panels show how the collision time Tcoll

of a lunar orbit varies with eccentricity and orbital inclination.
The inset to the first panel shows the lunar orbit in the Lidov
experiment. The inset to the second panel depicts the orbital
geometry.

to radial orbits. Stars, on the other hand, can undergo the
large scale shape changes through libration alone, a typi-
cal example of which is indicated on Fig. 12. This shows
the negative angular momentum branch for the co-rotation
(ℓ = 0,m = 1) resonance. The axisymmetric model is the
cored Mestel disc subject to the disturbance

ψp = ǫ
R

R3 + a3
cosmφ. (4.1)

As indicated by the bold horizontal line on the upper panel
of Fig. 12, the libration swings from circular to very nearly
radial for some orbits.

Close to the galactic centre, if a massive black hole is
present, the gravity field is nearly Keplerian. The gas can
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follow the closed periodic elliptical orbits. In order to direct
gas and stars onto the hole, a mechanism of increasing the
eccentricity of the orbit is again required. A tidal field in-
clined at an angle to the orbital plane is one possibility. We
can estimate the timescale on which the mechanism proceeds
as follows. Let us consider the Hamiltonian

H = 1
2
D2Ĵ

2 − A2(Ĵ , t) cos 2w. (4.2)

For the Kepler potential, D2 vanishes for the (ℓ = 0,m = 1)
resonance. The amplitude can be taken as (c.f., the lower
panel of Fig. 12)

A(Ĵ , t) = a(t)
[

1 − Ĵ2

Ĵ2
circ

]

, (4.3)

where a(t) is an arbitrary function of time. Let us choose
the normalisation so that the circular orbit has unit action,
i.e., Ĵcirc = 1. The trajectories of the equations of motion
are independent of the function a(t), namely

cos 2w ∝ 1

1 − Ĵ2
. (4.4)

A particularly simple case is when a(t) is just a constant,
say A. Then, gas starting on an orbit with action-angle coor-
dinates (Ĵ0, w0) loses all its angular momentum in the time

Tcoll =
1

2A

∫ Ĵ0

0

d Ĵ

([1 − Ĵ2]2 − [1 − Ĵ2
0 ]2 cos2 2w0)1/2

. (4.5)

This expression can be recast as an elliptic integral, but it is
easy to work out numerically as needed. If the gas starts out
on exactly circular orbit, then it can never lose all its an-
gular momentum, but small eccentricities can be amplified
quickly. In his fascinating book Huygens & Barrow, New-
ton & Hooke, Arnold (1990) briefly reported an observation
made by Lidov (1963). Lidov discovered that if the orbit of
the Moon is turned through 90◦, its eccentricity increases
so rapidly under the action of the tidal forces of the Sun
that it collides with the Earth in four years! An order-of-
magnitude confirmation is provided by (4.5) with the con-
stant A roughly equal to the tidal potential due to to the
Sun, i.e., A ∼ GM⊙r

2/R3. Here, R of course refers to the
Earth-Sun distance and r to the Earth-Moon distance. Tak-
ing the eccentricity of the Moon’s orbit at the present day
as 0.055 (Allen 1973), then the time taken for collision with
the Earth Tcoll is calculated by (4.5) as ∼ 3.7 years.

To investigate this problem further, the equations of
motion of the Moon in axes rotating with the Earth and
under the action of the solar tides

ẍ = − GM⊕x

r3
+

3GM⊙x

R3
+ 2Ωẏ,

ÿ = − GM⊕y

r3
− 2Ωẋ,

z̈ = − GM⊕z

r3
− GM⊙z

R3
.

(4.6)

were integrated numerically by fourth-order Runge-Kutta
methods. Here, the x-axis points towards the Sun, and the
z-axis points out of the plane of the ecliptic. Fig. 13 shows
the results of these integrations, in which the Moon always
starts off on the z-axis at apocentre. Coriolis force causes the
orbital plane to precess. The conserved perturbation poten-
tial that is appropriate here is an azimuthal mean of the tidal

potential felt around the figure of the orbit. In the Lidov ex-
periment (shown as an inset), this means that the line of
apsides of the orbit eventually settles to a torquing angle θt
of ∼ 51◦ (in contrast to the simple Hamiltonian (4.2), where
θt = 45◦). The final torquing angle for arbitrary eccentricity
may be deduced from the conserved potential as

cos 2θt = 1
5
(6e2 − 1). (4.7)

The maximal torque occurs when θt = 45◦ so that the eccen-
tricity curve flattens out. When the orbital plane is inclined,
the collision time Tcoll increases dramatically, and this lim-
its the range of orbits that can be tidally elongated. This
mechanism may have interesting applications in the central
regions of galaxies dominated by black holes, where the po-
tential is nearly Keplerian. Tidal forces, perhaps caused by
a sinking object, can drive orbiting stars into the hole. An-
other application is to the survival of high inclination comets
and asteroids, where indeed this instability has already been
discovered anew (e.g., Kozai 1980; Stagg & Bailey 1989).

4.2 4.2 Modes

A disturbance changes the angular momentum of the stars
in two ways. First, it may capture a star and carry that
trapped star as it moves. Otherwise, it will flip the stars
that it encounters from one sense of rotation to the other.
The angular momentum transferred in the second process
depends upon the speed of transition. Tremaine & Weinberg
(1984) investigated this for non-singular points along the
envelope. Here, we supplement their calculations with those
appropriate to orbits of low eccentricity close to a U-point
and general orbits near X-points.

Now let us imagine a disturbance at inner Lindblad res-
onance, the pattern speed of which is slowly decreasing. As
the disturbance sweeps across the section, it encounters first
the low phase density tail of this distribution. If we assume
the amplitude of the wave to be steady, then each star is
flipped and none are caught (see Section 3.2). This angular
momentum jump decreases as we approach the tip of the
section, but all stars are shifted and so, after the distur-
bance has passed, a hole has opened up with a sharp edge
and the distribution has lost the orbits that were originally
very near to circular. In addition, the tail of the distribution
has been distended. For example, suppose we have a warm
exponential disk with a radial scale-length 1/α and a cen-
tral velocity dispersion σ0. If the disk has a completely flat
rotation curve (vcirc = 1), then the potential in the plane
is that of Mestel (1963). If the velocity dispersion is also
exponentially declining, then the distribution function has
the form (Newton 1986; Binney 1987; Kuijken & Tremaine
1991)

f(JR, Jφ) = f0 exp
[

−σ−2
0 exp(αJφ)κJR

]

, (4.8)

where f0 is independent of the velocities. Along the section,
this becomes

f(Jf , Js) = f0 exp
[

−
√

2σ−2
0 exp(αJs)(

Jf

Js

± 1

2
)
]

. (4.9)

Here, the negative sign is appropriate for ILR, the positive
sign for OLR. For a flat rotation curve, the Hamiltonian for
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Figure 14. The upper and lower panels show the distribution
function of the warm exponential disk at inner and outer Lind-
blad resonance respectively. In each case, the distribution func-

tion is shown before (in dashed line) and after (in unbroken line) a
wave sweeps across the equiaction section. The disturbance heats
the disk and opens up a hole in the distribution function corre-
sponding to the missing circular orbits. [The upper panel is drawn
with Jf = 0.5, the lower panel with Jf = −2.9 in units in which
σ0 = 1/4 and v0 = α = 1.]

epicyclic orbits may be approximated by

H =
1

2
+ log Jφ +

√
2
JR

Jφ
− 11J2

R

12J2
φ

. (4.10)

from which the inertial response D1 at both ILR and OLR
is negative. This can also be deduced by inspection of the
lower panel of Fig. 1. The distribution function is so steep
that we assume for simplicity that D1 is the same for all the
stars within each section and the Hamiltonian can (with a
scaling) be brought into the form (3.16). To work out the
flip experienced by each star, we match its initial action to
the action along the incident branch of the separatrix. The
corresponding jump is then just the phase area of the sepa-
ratrix lobe. As before, let the scaled action of the unstable
fixed point P at the moment of flipping be x2

⋆/2. The phase
area between any orbit and the circular orbit at the end of
the tip is π|Jcirc−J |. This is scaled and matched to the area
under the inner separatrix branch

Sret = (
π

2
− asin(x−3/2

⋆ ))(x2
⋆ +

2

x⋆
) − 3(x3

⋆ − 1)1/2

x⋆
. (4.11)

The flip F will then be

F = 2
[

(x2
⋆ +

2

x⋆
) asin(x−3/2

⋆ ) +
3(x3

⋆ − 1)1/2

x⋆

]

. (4.12)

The final area under the phase curve Sprog is just the initial
area plus the flip, or

Sprog = F + Sret = π
[

x2
⋆ +

2

x⋆

]

− Sret. (4.13)

Figure 15. The creation of a notch in the distribution function.
The upper panel highlights two strips of phase. The dark phase is
denser. After passage across the separatrix, stars from these strips
are partitioned between two populations as shown in the second
panel. The region of lower phase density now lies between two
high density strips. (Here, the phase density is stratified on lines
of constant EJ. The equiaction section does not justly represent
phase areas, but for pictorial convenience, we have drawn each
strip with a constant strip-averaged phase density).

When the disturbance has moved far away, this is – once
unscaled – the new slow action or angular momentum Jn

φ

of the star. The final coarse–grained distribution function
along the section is

fcoarse(JR, J
n
φ) = f(JR, Jφ)

dJφ

dJn
φ

, (4.14)

where the Jacobian is

dJφ

dJn
φ

=
π
2
− asin(x−3/2

⋆ )
π
2

+ asin(x−3/2
⋆ )

. (4.15)

The distribution function is coarse–grained because “air”
has become mixed up with the phase as the well passes and
the phase area deflates. This point is made clearly by Srid-
har & Touma (1996), who performed a related calculation
on vertical heating of stars in a galactic disk by sweeping
resonances. Fig. 14 shows the initial (dashed line) and final
(unbroken line) distribution functions for the warm expo-
nential disk. The upper panel refers to ILR, the lower panel
to OLR. In each case, the flips get smaller towards the tip
and the last flip creates a hole with width W

W =
3π

21/3

∣

∣

∣

A2

D1

∣

∣

∣

2/3

. (4.16)

The hole has been advected by the well from a region of zero
phase density and deposited at the end of the tip entirely
vacating the near-circular orbits. If the disturbance moves
in the opposite direction, into the section, a different redis-
tribution of phase occurs. The section bends as shown in
Fig. 15 and the phase settles into horizontal layers until the
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appearance of the separatrix. Layers above the separatrix
at this point will then be processed in turn. A portion of
the phase will move into the main well and a portion will
flip in accordance with the capture probability. As the di-
agram makes clear, a notch is created in the distribution
function. Adiabatic transfer of phase is one mechanism for
creating inverted populations – in the sense that the phase
space density gradients have their sign changed. This is true
here but the phase density is still most concentrated about
the two periodic orbits. Such holes and notches in the distri-
bution function are well-known sites of instability (Toomre
1981; Sellwood & Kahn 1991).

The holes lead to a systematic gain in angular momen-
tum at OLR, and a loss at ILR. This is similar to, but
not identical with, the effect discovered by Lynden-Bell &
Kalnajs (1972). Their famous formula for angular momen-
tum transport applies to infinitesimally small waves, so small
in fact that no star completes a traverse of the separatrix.
Consequently, the issue of capture and escape is irrelevant
to their calculation as is suggested by the absence of terms
involving the gradient of the amplitude of the disturbance,
i.e.,

J̇φ =
−1

8π

∫

dJf

∫

dJsm
2 ∂F

∂Js

A2
mδ(mΩp −mΩ − ℓκ). (4.17)

What is relevant, however, are the amounts of phase just en-
tering into libration near the two branches of the separatrix
and this is manifest in the gradient of the distribution func-
tion in (4.17). In the flipping mechanism, the hole displaces
phase around itself, irrespective of density gradients. A nice
picture to have in mind is of a bubble in a spirit level.

The shunting mechanism relies on there being no cap-
ture and so the hole remains empty. It is interesting to see
if this situation persists when the amplitude of the pertur-
bation is turned on more quickly. To this end, Monte Carlo
simulations were performed with the equations of motion
derived from the Hamiltonian (3.16) with a Gaussian turn-
off

λ = λ0 exp(−at2), (4.18)

From (3.17), turning λ off is equivalent to increasing the
amplitude of the disturbance. The constant a determines the
speed of separatrix crossing. The results are shown in Fig. 16
for two different values of λ0. The probability of flipping
remains unity as we move out of the adiabatic régime. The
dip has an interesting explanation. The turn-off law has an
inflection point at t = (2a)−1/2. If stars make their inward
crossing of the separatrix just before this time, they can then
lose more energy than they gain on the outward crossing.
This is a deviation from adiabatic theory. Whilst subtleties
of this kind should be observed, adiabatic invariants are –
in the nice phrase of Alar Toomre – “very forgiving”.
Since capture at a U-point even by a rapidly growing wave is
hard, it would appear difficult to establish a density support-
ing population to build, for instance, a bar from near-circular
ILR orbits. This difficulty can be circumvented by capture at
frequencies above the ILR. In this case, the trapped family
are the distorted circular orbits and, intriguingly, a negative
inertial response now promotes a quick shedding of angular
momentum and a density enhancing elongation of the or-
bits. This is illustrated on the equiaction sections shown in
Fig. 17, where the curvature of the section in the negative

Figure 16. Monte Carlo simulations of the equations of motion
at a U-point (3.16) subject to a slow turn-on of the trapping
potential. In adiabatic theory, all the stars flip from prograde to
retrograde rotation. The probability of flipping is plotted against
the constant a. The larger the value of a, the faster the speed of
separatrix crossing. Adiabatic theory is seen to hold good over
nearly five orders of magnitude. (The full line refers to λ0 = 3,
the dashed line to λ0 = 16.5).

Figure 17. Equiaction sections for stars whose ILR frequencies
are below that of the applied perturbation. The distorted circular
orbits are trapped into libration below the pseudo-separatrix in-
dicated by a dot-dashed line. In the upper panel, the stars possess
positive inertial response, in the lower panel, negative. Capture
into a potential reinforcing libration is now assisted by negative
inertial response, the curvature of the section acting with the
swelling of the envelope

inertial case acts with the swelling of the envelope.
The closing of the envelope at the U-point led to a hole

in the distribution function. Similar behaviour occurs close
to an X-point. If we consider the transition between the
two main panels of Fig. 6, stars close to the X-point and
above SP1 are again dispatched into counter-rotation, with
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their angular momentum flip diminishing the closer they are
to the X-point. Eventually, the separatrix is replaced by a
pseudo-separatrix. The advection of angular momentum is
stopped at a stationary X-point. If the X-point is moving –
as surely it is – then stars can be squeezed across, much like
icing from an icing bag. The relative number of stars trapped
into libration about P1 or P2 is once more determined by
the growth rates of the phase space areas associated with the
trapping region. When the pattern speed alone is changing,
the trapping region around P2 is essentially excluding phase,
whereas that around P1 is swallowing phase. Stationary X-
points make the wave give up its bound angular momentum.

4.3 4.3 Figure Rotation and Triaxial Models

Analyses of images of galactic nuclei taken with the
HST planetary camera have shown that the surface bright-
ness distributions of early-type galaxies are almost always
cusped (Lauer et al. 1996). For example, the surface bright-
ness of the nearby S0 galaxy NGC 7547 is cusped in the
inner 600 parsecs like R−1. Although there is no difficulty
in the sustenance of axisymmetric cusps (e.g., Evans 1994),
the survival of triaxial cusps is a much more delicate mat-
ter. For a point perturber in a triaxial non-rotating galaxy,
Gerhard & Binney (1985) computed the timescale on which
a typical box orbit suffers a serious deflection. They con-
cluded that box orbits with apocentres ∼< 1 kpc are dis-
rupted over the course of a Hubble time. This process may
cause the shape of the inner parts of galaxies to become ax-
isymmetric. Schwarzschild and co-workers (Miralda-Escudé
& Schwarzschild 1989; Lees & Schwarzschild 1992) have also
suggested that strongly flattened triaxial figures with den-
sity cusps may not be able to persist. Recently, Merritt
& Fridman (1995) presented numerical results on the ex-
istence of non-rotating triaxial galaxy models with cusps.
Only for weak central cusps (ρ ∼ r−1) were they able to
build equilibrium models, raising again the question of the
existence of stationary triaxial galaxies with strong central
cusps (ρ ∼ r−2). In this section, we suggest an answer to
the question : does figure rotation aid the survival of triax-
ial models with central scatterers?

The upper and lower panels of Fig. 18 show equiaction
sections in static and mildly rotating triaxial potentials. A
typical box orbit is marked by a bold horizontal line in each
case. B1 and B3 mark the points where the libration reaches
the bottom of the well. At B2, the libration finishes its swing.
The dashed curve defines the opening angle of the fan. When
the potential is static, the box orbit turns round in azimuth
on the radial orbits (Jφ = 0). When the potential is rotat-
ing, this turn-round occurs on an eccentric but non-radial
orbit (Jφ 6= 0). The upper and lower panels of Fig. 19 again
refer to static and rotating triaxial potentials. In each case,
the orbit produced by propelling a star from the same spot
on the minor axis with the same speed is shown, together
with the linear density across the waist. In the non-rotating
case, this possesses cusps only at the waist’s edge, but in-
ner cusps appear when there is figure rotation. The inner
cusp is brought closer to the centre by moving the point B1

in Fig. 18 towards Jφ = 0. This subtlety aside, the more
striking change is that the waist of the box orbit has been
broadened and the probability of hitting the centre reduced.
Waist broadening by figure rotation will therefore assist the

Figure 18. The upper panel shows an equiaction section at inner
Lindblad resonance (ℓ = 1, m = 2). The bold horizontal line
represents a trapped box orbit in a galaxy with no figure rotation.

The lower bounding curve of the section represents the trough of
the well. So, B1 and B3 mark the points where the box orbit
crosses the trough. The dot-dashed line is the potential at the
slow angle w marking the amplitude of libration of the box. This
occurs at B2, which coincides with Jφ = 0 (marked by an arrow).
So, the box orbit is bounded by straight line segments. The lower
panel shows the changes inflicted by rotation. The point B2 is
now offset from Jφ = 0 and so the box orbit is no longer bounded
by straight lines.

survival of triaxial galaxies with central scatterers.
We can also use the theoretical methods of this pa-

per to estimate the relative numbers of stars that are cast
into the prograde and retrograde directions when a bar dis-
solves. This may be relevant to formation histories of galax-
ies like NGC 4550, which is built from two similar counter–
streaming stellar components (Evans & Collett 1994). A bar
will consist of stars in a laminate of sections, and the capture
probability must be evaluated for each. In a strong bar, the
curvature of the envelope dominates over the central seam,
but in the final stages of dissolution or for weak bars, we can
use the analysis of Section 3.3. For a non-rotating bar, we
lose equally into the two streams. When there is rotation,
the envelope of the section is thinner towards the tip. Mild
rotation is represented in the lower panel of Fig. 18. The
boxes are still very elongated and have a positive inertial
response, like rods. We can estimate the relative size of the
two streams as follows. The phase areas under the prograde
and retrograde parts of the lobe are:

Sprog =4
∣

∣

∣

A2

D1

∣

∣

∣

1/2

+ π
3B2D1 −D2A2

3D2
1

,

Sret =4
∣

∣

∣

A2

D1

∣

∣

∣

1/2

− π
3B2D1 −D2A2

3D2
1

.

(4.19)

A simple scale change of the envelope implies Ḃ2 =
Ȧ2B2/A2. The number of stars that escape into the two
streams is proportional to the changes in the two areas
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Figure 19. The upper two panels show a box orbit in the princi-
pal plane of a stationary triaxial potential, together with the or-
bital density across its waist. The two orbital density spikes corre-

spond to the bounding straight line sections of the box orbit. The
lower two panels show the same orbit in a triaxial potential with
figure rotation. The box orbit is bounded by looping segments
rather than straight lines. [The model used is the Binney poten-
tial with q = .9 and v0 = Rc = 1. The orbits are both launched
form the minor axis (x = 0, y = 1) with (vx = 2, vy = −.2). The
pattern speed Ωp = 0 in the former case and 0.015 in the latter.]

(4.19). We find that the streams are weighted 1
2

+α : 1
2
−α,

with

α =
π

12

(3D1B2 −D2A2)

|D3
1A2|1/2

. (4.20)

Along an inner Lindblad section, the inertial response can
change from positive near the radial orbits to negative for
near-circular orbits (see the lower panel of Fig. 1). There is a
point, then, at which D1 vanishes and the above analysis is
not valid. For a weak, fast rotating bar, we can return to the
analysis of Section 3.2. In this case, stars are more bound
when the amplitude drops. If the rule-of-thumb (4.20) is ap-
plied to the slow moving bar in the upper panel of Fig. 4,
then the number of stars moving in the prograde sense is
enhanced to ∼ 60 per cent. This is by no means a small
asymmetry, especially in view of the slowness of the bar.
This suggests that it is possible to build markedly asym-
metric counter-streams by break-up of a rapidly rotating
bar.

5 5 CONCLUSIONS

This paper has shown how to calculate population changes
caused by resonant escape and capture in a disk of stars.
These processes depend on the shape of the effective poten-
tial well for orbital capture. Changes in the well are easy to
picture on an equiaction section. For time-dependent prob-
lems, in particular, the equiaction section offers advantages
over alternatives, such as Poincaré surfaces of sections. The

main results of the paper are:

(1) There are barred galaxies with two outer rings of gas

and stars (so-called R
′

1R
′

2 galaxies). It is very difficult to

transfer stars between the two outer rings in R
′

1R
′

2 galaxies.
Surprisingly, if the bar is decelerating or dissolving, both
the rings can grow. If the bar is speeding up or increasing
in strength, both the rings fade.

(2) Counter-rotating stars and gas are particularly suscep-
tible to large eccentricity change. This mechanism could be
important in channelling stars and gas towards the centres
of galaxies. Tidal resonant forcing of highly inclined orbits
around a central massive object will increase the likelihood
of close encounters between the orbiting star and the object.
So, in the centres of galaxies, tidal forces – perhaps caused
by a sinking object – can drive orbiting stars onto a black
hole.

(3) Resonances can create sharp holes and notches in the
stellar distribution function, as well as high velocity tails,
the width and shape of which we have explicitly calculated.
The advection of angular momentum can be halted by the
ocurrence of X-points (defined in section 2.2).

(4) Figure rotation will assist the survival of triaxial, cusped
models by broadening the waists of box orbits. Moderate
asymmetries in the populations of prograde and retrograde
stars are produced by dissolving mildy rotating bars. A
counterstreaming disk with, say, 60 per cent of stars moving
in the prograde, 40 per cent in the retrograde direction is a
likely end-point of the disruption.
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Miralda-Escudé J., Schwarzschild M., 1989, ApJ, 339, 752
Newton A., 1986, D. Phil. thesis, Oxford University
Peale S. J., 1976, ARAA, 14, 215
Sellwood J., Kahn F. D., 1991, MNRAS, 250, 278
Sridhar S., Touma J., 1996, MNRAS, 279, 1273
Stagg C., Bailey M., 1989, MNRAS, 241, 506
Tremaine S. D., Weinberg M., 1984, MNRAS, 209, 729
Toomre A., 1981, in Fall S. M., Lynden-Bell D., The Structure and

Evolution of Normal Galaxies. Cambridge University Press,
Cambridge, p. 111.

Yoder C., 1973, Ph. D. thesis, University of California, Santa
Barbara

Yoder C., 1979, Celest. Mech., 19, 3

6 APPENDIX A: THE JOINTED ARM

Fig. 20 depicts a simple mechanical system – a mass at-
tached to a fixed pivot by a jointed arm. We suppose that
all the inertia of the arm resides in that part attached to the
fixed pivot. The Lagrangian of the system is just the kinetic
energy, which we may write as

L = (µ+ 1)β̇2 + α̇β̇ +
1

2
α̇2 + β̇(α̇+ β̇) cosα, (A1)

where µ measures the angular inertia of the arm relative to
that of the attached mass. We see that β is a cyclic coor-
dinate manifesting the freedom to shift the azimuthal angle

β

α

Figure 20. A picture of the jointed arm.

Figure 21. A plot of the energy integral (H) against the canon-
ical momentum pα for the arm at a fixed value of the canoni-
cal momentum pβ . This is analogous to the equiaction sections
discussed in the main body of the paper. The lines are drawn
at representative, equally spaced values of α between 0 and π.
Trajectories on the section are horizontal lines bounded by the
envelope.

about the pivot. The conserved momentum conjugate to β
is

pβ =
∂L

∂β̇
= 2µβ̇ + (2β̇ + α̇)(1 + cosα), (A2)

which is of course the total angular momentum of the mass
and the arm. It is convenient to exploit this invariant to
simplify the description of motion in the remaining degree
of freedom. To this end, we construct the Routhian (Landau
& Lifshitz 1969),

R = pββ̇ − L. (A3)
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After dropping a total time derivative, which will not con-
tribute to the new action, we find

R =
p2

β − α̇2(2µ+ sin2 α)

4(1 + cosα+ µ)
. (A4)

The equation of motion of α, describing the pivoting of the
arm, is then obtained from the Routhian

d

dt

(

∂R

∂α̇

)

=
∂R

∂α
, (A5)

or directly from an energy integral

H =R− α̇
∂R

∂α̇
,

=
p2

β + α̇2(2µ+ sin2 α)

4(1 + cosα+ µ)
.

(A6)

In the limit µ >> 1, when the inertia of the arm is much
greater than the attached mass, the librations reduce to that
of the simple pendulum

α̈ = − p2
β

4µ2
sinα. (A7)

We can see that the effect of the conserved momentum is
to provide an effective potential for the swinging mass. The
steady states of this system (analogous to the periodic or-
bits) correspond to the arm extended with α = 0 (stable) or
inwardly directed with α = π (unstable).

We can represent the possible motions of the system on
a section through the phase space of the arm at fixed con-
served momentum pβ. The ordinate in Fig. 21 is the energy
integral

H =
p2

β

4(1 + cosα+ µ)
+

(1 + cosα+ µ)p2
α

2µ+ sin2 α
. (A8)

This energy integral is conserved so the trajectories oscil-
late along horizontal lines bounded by the confining enve-
lope. These curves correspond to the trough (α = 0) and
the crest (α = π) of the potential, where the kinetic en-
ergy of the attached mass is at a maximum or minimum.
The greater the value of pβ, the greater the breadth of the
envelope and consequently the broader the libration in pα.
The curvature of the envelope is dictated by the coefficient
of p2

α. There are motions of the attached mass in which it
freely rotates about the joint pivot. There are motions too
in which the mass librates about an outward pointing ra-
dius corresponding to the minimum of the effective centrifu-
gal potential. These trapped motions lie in the basin of the
section. In this region, we see that the section is internally
bi-symmetric and dominated by a single harmonic. The en-
velope constricts at large pα. There is an eventual cross-over
of the lines of constant α (c.f., Fig. 11).

We can illustrate too the rôle that adiabatic invariants
can play in the secular evolution of the system. Suppose the
jointed arm, having been uniformly heated, is slowly return-
ing to its natural length. We can anticipate that the system
will conserve angular momentum and spin up as it shrinks.
But, what happens to the libration of the attached mass as
a function of the length ℓ(t) of the arm? We have implicitly
removed a quadratic factor of length from the Lagrangian
(A1) so that we can keep the equation of motion (A7) but

with respect to a scaled time τ , such that

dτ =
dt

ℓ(t)2
. (A9)

As the arm shrinks, there is an effective increase in the cen-
trifugal acceleration, but the angular range of the oscillation
remains the same (as may easily be seen by integrating the
equation of motion). In this process, it may not – for instance
– pass from rotation to libration. Notice too that the action
associated with the α oscillation is conserved exactly in this
case. Suppose instead that the inner arm though contract-
ing overall at the same rate as the outer has been heated
differentially along its length. The re-distribution of mass
may lead µ to be a slowly varying function of time. In this
case, the action is only adiabatically invariant. Further, if
µ is decreasing (for example, if the inner arm experiences
greater heating close to the pivot), then the angular extent
of the oscillation also decreases. The existence of the adia-
batic invariant leads the mass to move closer to the mini-
mum energy state in which the arm is straight and aligned
radially outward.

7 APPENDIX B: CALCULATION OF THE
REFINED CAPTURE PROBABILITY
FORMULAE

This Appendix gives some more details of the computations
leading to the capture probabilities presented in Section 3.4.
Suppose the Hamiltonian is

H̃ = J̃2 − 2λJ̃ − 2(2J̃)1/2(1 − ǫJ̃) cos w̃. (B1)

The separatrix actions I are best evaluated using

I =
1

π

∮

J̃dw̃ =
1

π

∮

J̃ ˙̃w
˙̃J
dJ̃, (B2)

where the dots represent time derivatives and J̃(w) is the
equation of the separatrix. If the separatrix energy is Hsep,
then the numerator becomes

J̃ ˙̃w = 3
2
[1 − 1

9
ǫ(8λ− 6J̃)](J̃ − J̃u)

× [J̃ + J̃u − 2
3
λ− 1

27
ǫ(24Hsep + 16λ2)],

(B3)

where J̃u marks the position of the unstable fixed point. The
denominator can be factorised as

˙̃J = [(J̃ − J̃u)2(J̃2 − J̃)(J̃ − J̃1)]
1/2. (B4)

In other words, the unstable fixed point is always a double
root, whereas the ends of the separatrix J̃1, J̃2 are single
roots of the quartic. A lengthy calculation gives the areas
under the separatrix branches as:

Sret = πλ+ 2λ asin(x−3/2
⋆ ) +

3(x3
⋆ − 1)1/2

x⋆

− ǫ[
3πx⋆

2
+G1(x⋆)],

Sprog = πλ− 2λ asin(x−3/2
⋆ ) − 3(x3

⋆ − 1)1/2

x⋆

− ǫ[
3πx⋆

2
−G1(x⋆)],

Strap = 4λ asin(x−3/2
⋆ ) +

6(x3
⋆ − 1)1/2

x⋆
.

− 2ǫG1(x⋆),

(B5)



22 J.L. Collett, S.N. Dutta and N.W. Evans

where

G1(x⋆) = 3 asin(x−3/2
⋆ ) +

(2 + x3
⋆)(x

3 − 1)1/2

x2
⋆

. (B6)

Using (3.11) now gives the final result for the capture prob-
ability reported in the text as (3.38).

The addition of a second harmonic at the U-point leads
to consideration of this Hamiltonian:

H̃ = J̃2 − 2λJ̃ − 2(2J̃)1/2 cos w̃ − µJ̃ cos 2w̃, (B7)

The areas under the separatrices are:

Sret = πλ+ 2λ asin(x−3/2
⋆ ) +

3(x3
⋆ − 1)1/2

x⋆

+ µ[
π

2
G2(x⋆) +G3(x⋆)],

Sprog = πλ− 2λ asin(x−3/2
⋆ ) − 3(x3

⋆ − 1)1/2

x⋆

+ µ[
π

2
G2(x⋆) −G3(x⋆)],

Strap = 4λ asin(x−3/2
⋆ ) +

6(x3
⋆ − 1)1/2

x⋆
.

+ 2µG3(x⋆),

(B8)

where

G2(x⋆) =
1

36x3
⋆

[

x9
⋆ + 10x6

⋆ − 14x3
⋆ + 12

]

. (B9)

G3(x⋆) = (x3
⋆−1)1/2

[

x3
⋆

12
+

1

6x3
⋆

]

+G2(x⋆) asin(x−3/2
⋆ ).(B10)

In this problem, x⋆ ≥ 1 correspond to those values for which
there is a trapping region. The capture probability is given
as (3.42).
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