129 research outputs found

    The Response of Soil Physicochemical Properties in the Hyrcanian Forests of Iran to Forest Fire Events

    Get PDF
    When forest fires occur, highly complex effects on soil properties and hydrological processes are activated. However, in countries such as Iran, these consequences are not widely studied and there is a lack of studies. Therefore, the main aim of this study was to investigate the effects of wildfire on soil quality characteristics in a representative forest area located in the Hyrcanian forests, specifically, in the Zarrinabad watershed of Sari. For this purpose, four different sites, including unburnt natural (UNF), burned natural (BNF), unburnt plantation (UPF), and burned plantation forests (BPF) were selected. Soil sampling was performed at each site using the random, systematic method at a depth from 0 to 30 cm. To investigate the effects of fire on physical and chemical properties indicators, 10 plots with dimensions of 0.5 x 0.5 m were placed at a distance of 1.5 m from each other at each site. Soil samples were transported to the laboratory and their physical and chemical properties were determined. The results showed that the percentage of sand, silt, aggregate stability, soil hydrophobicity, organic carbon, organic matter, soil total nitrogen, absorbable potassium and phosphorus, electrical conductivity, and pH, increased significantly when the soil surface is burned (p = 0.05). These findings demonstrate that forest fire effects in Iran must be considered as a key topic for land managers because soil properties and hydrological processes are drastically modified, and land degradation could be irreparably activated.Sari Agricultural Sciences and Natural Resources Universit

    Impact of soil erosion and runoff on mountain slopes of Mediterranean agroecosystems

    Get PDF
    La degradación de suelos en los agroecosistemas mediterráneos implica una pérdida de utilidad actual y una reducción de sus funciones potenciales, tanto por procesos naturales, como aquellos especialmente inducidos e intensificados por las acciones humanas. Se evalúa el impacto de la erosión y escorrentía en diferentes tipos de uso del suelo (TUS): agrícola (olivar, almendro y cereal), bosque (Pinus halepensis y Pinus sylvestris), matorral, pastizal y tierras de cultivo abandonadas, en Sierra Nevada (SE España). Las parcelas cerradas de erosión-escorrentía con dos repeticiones fueron instaladas en las laderas en cada TUS, registrándose tasas de erosión y escorrentía durante 22 eventos lluviosos. De acuerdo con los resultados obtenidos en el marco del presente estudio, los TUS consistentes en P. halepensis y P. sylvestris minimizaron de forma significativa la erosión y escorrentía, en contraste con los suelos agrícolas abandonados. En relación a los TUS con actividad agrícola se determinó una mayor incidencia de la erosión en el olivar respecto al almendro y cereal. El matorral registró tasas de erosión y escorrentía intermedia entre los Pinus spp. y agrícolapastizal. En consecuencia, la alteración de la cubierta vegetal es crucial para interpretar la degradación de la productividad de los suelos, así como para planificar estrategias sostenibles con el objeto de mitigar los procesos de degradación del suelo en agroecosistemas mediterráneos.Land degradation in Mediterranean agroecosystems implies the loss of current utility and reduction of its potential functions, by both natural processes and those specifically induced and intensified by human actions. The impact of erosion and runoff on different land-use types (LUT): farmland (olive, almond and cereal), forest (Pinus halepensis and Pinus sylvestris), shrubland, grassland and abandoned farmland in Sierra Nevada (SE Spain) have been assessed. The erosion plots twice replicated were located on the slopes for each land-use type, monitoring the erosion and runoff rates for 22 rainfall events. According to the results of the present study the LUT consisting in P. halepensis and P. sylvestris significantly minimized soil erosion and runoff, in contrast to the abandoned farmland. In relation to farmland activity important impact of erosion has been found in olive plots than in almond and cereal. The shrubland generated intermediate erosion and runoff rates between Pinus trees and agriculture-grassland plots. Consequently, plant cover change is crucial in interpreting the productivity degradation of soils, as well as in planning sustainable strategies to mitigate soil degradation processes in Mediterranean agroecosystems.Este trabajo fue realizado en el marco de los proyectos de investigación “Procesos hidrológicos y erosivos y valoración de la biomasa y secuestro de carbono orgánico bajo diferentes usos del suelo en la cuenca agraria “El Salado”, Lanjarón (SE España) (RTA2007-00008-00-00)” y “Técnicas de agricultura de conservación en cultivos leñosos de secano y clima mediterráneo: implicaciones en la productividad sostenible, control de la erosión, mantenimiento de la biodiversidad edáfica y la calidad de los suelos (RTA2011-00007-00-00)”, ambos otorgados por el INIA y cofinanciado con fondos FEDER de la UE

    Respuesta agronómica a largo plazo del cultivo del almendro sometido a dos estrategias de riego deficitario

    Get PDF
    Comunicación presentada al XXXVII Congreso Nacional de Riegos, celebrado en Don Benito del 4 al 6 de Junio de 2019 y organizada por la Asociación Española de Riegos y Drenajes y la Universidad de ExtremaduraEl objetivo del presente trabajo fue evaluar la respuesta agronómica a largo plazo del cultivo del almendro (cv. Guara) sometido a dos estrategias de riego deficitario durante el periodo de llenado de grano, recibiendo cantidades similares de agua, pero con una distribución del estrés diferenciada a lo largo del tiempo; para poder definir la mejor estrategia posible minimizando las perdidas de producción e incrementando el uso eficiente del agua

    Response of essential-oil yield of aromatic and medicinal plants to different harvesting strategies

    Get PDF
    The demand for aromatic and medicinal plants (AMPs) is growing worldwide, and most of them are from the wild collection. Today there is a consensus that for industrial purposes the AMPs must be cultivated. Many studies have shown the importance of the collection strategy used to guarantee the plant regeneration, and soil protection against erosion process in mountainous areas in the Mediterranean region. In this work, during three-year monitoring period we compared in four AMPs two harvest strategies by cutting biomass in 25% (BHI25) and 50% (BHI50) of oregano (Origanum bastetanum L.), lavender (Lavandula lanata L.); sage (Salvia lavandulifolia V.); and santolina (Santolina rosmarinifolia L.) in order to assess their effect on essential-oil content, and to be consistent with both plant and soil conservation in Mediterranean steeply sloping areas. The experimental plots were located in Lanjarón (Granada, SE Spain), on a 20% slope. According to the findings the strategy BHI50 of fresh herb of oregano, lavender, sage, and santolina produced essential-oil yield of 13.2 ± 1.74, 17.3 ± 1.69, 9.7 ± 5.21, and 10.8 ± 2.00 L·ha-1, respectively. Since significant differences were found between BHI25 and BHI50 strategies for harvest and distillation of aromatic plants, we recommend a rational harvest, leaving the 50% of the plant biomass in the field to avoid the soil degradation. In addition, with this rational harvest strategy encourages the sustainable AMP cultivation without significant alterations for essential-oil yields, and at the same time guaranteeing the regrowth, and conservation of them in its habitat. Therefore, encouragement local decision-making measures regarding environmental compatibility, social acceptability and economic viability in land use and management will be crucial. Otherwise, the inappropriate harvest of aromatic shrubs in mountain areas compromises land conservation.The demand for aromatic and medicinal plants (AMPs) is growing worldwide, and most of them are from the wild collection. Today there is a consensus that for industrial purposes the AMPs must be cultivated. Many studies have shown the importance of the collection strategy used to guarantee the plant regeneration, and soil protection against erosion process in mountainous areas in the Mediterranean region. In this work, during three-year monitoring period we compared in four AMPs two harvest strategies by cutting biomass in 25% (BHI25) and 50% (BHI50) of oregano (Origanum bastetanum L.), lavender (Lavandula lanata L.); sage (Salvia lavandulifolia V.); and santolina (Santolina rosmarinifolia L.) in order to assess their effect on essential-oil content, and to be consistent with both plant and soil conservation in Mediterranean steeply sloping areas. The experimental plots were located in Lanjarón (Granada, SE Spain), on a 20% slope. According to the findings the strategy BHI50 of fresh herb of oregano, lavender, sage, and santolina produced essential-oil yield of 13.2 ± 1.74, 17.3 ± 1.69, 9.7 ± 5.21, and 10.8 ± 2.00 L·ha-1, respectively. Since significant differences were found between BHI25 and BHI50 strategies for harvest and distillation of aromatic plants, we recommend a rational harvest, leaving the 50% of the plant biomass in the field to avoid the soil degradation. In addition, with this rational harvest strategy encourages the sustainable AMP cultivation without significant alterations for essential-oil yields, and at the same time guaranteeing the regrowth, and conservation of them in its habitat. Therefore, encouragement local decision-making measures regarding environmental compatibility, social acceptability and economic viability in land use and management will be crucial. Otherwise, the inappropriate harvest of aromatic shrubs in mountain areas compromises land conservation

    Irrigation alternatives for avocado (Persea Americana Mill.) in the Mediterranean Subtropical region in the context of climate change: a review

    Get PDF
    Due to congenital features, avocado (Persea Americana Mill.) trees are substantial water users relative to other fruit trees. The current growing deficiency of water resources, especially in arid and semi-arid avocado-producing areas, has led to the demand for more sustainable water-saving measures. The objective of this review was to analyze the role of deficit irrigation as a strategy to face climate change and water scarcity through achieving efficiency, saving water, and maximizing the benefits that could be achieved at the level of the irrigated agricultural system. Particular attention is devoted to studies performed in the subtropical Mediterranean climate, in which irrigated avocado orchards are common. These studies analyzed irrigation demand, deficit irrigation, and determination of water status through physiological parameters, leading to possible sustainable irrigation programs for avocado in the context of water shortage scenarios. Through these insights, we conclude that under the current climatic circumstances with respect to available water resources, avocado farming requires sustainable resilience strategies to reduce irrigation water consumption without affecting the yield and quality of the fruits. Water stress inevitably affects the physiological processes that determine yield. Therefore, an admissible yield loss is required with smaller fruits and water savings made through deficit irrigation strategies. In addition, modern consumers tend to prefer foods based on sustainability, i.e., there is a high demand for socially responsible and environmentally friendly products

    Yield of new hemp varieties for medical purposes under semi-arid Mediterranean environment conditions

    Get PDF
    Under the effects of climate change new drought tolerant crops are imperative to introduce in irrigated agricultural areas of Mediterranean countries. In this sense, hemp (Cannabis sativa L.) represents an alternative in many semi-arid agricultural areas of Mediterranean basin because of its low water requirements and cost effectiveness when it is developed under non controlled conditions. The aim of this work was to evaluate the potential yield of five new hemp varieties (Sara, Pilar, Aida, Theresa, and Juani) cultivated under high tunnel conditions in a semi-arid Mediterranean area, and also to study the effect of plant density on active biomass production and cannabinoids biosynthesis (cannabidiol, CBD and cannabigerol, CBG) at different plant positions. The trial was conducted under plastic macro-tunnels during two seasons (2014 and 2015), from May to October. The agronomic response and the chemical profiles of the studied varieties were evaluated at the end of each season. Moreover, it was monitored the differentiation in terms of active biomass production and cannabinoids biosynthesis in different plant organ positions (at upper, medium, and lower). Additionally, during the second season, three different plant densities (PD1, 9,777; PD2, 7,333; and PD3, 5,866 plants· ha-1) were tested in order to define the the best of them for maximizing CBD and CBG productions. The findings highlighted significant differences in yield between cultivars within the CBD and CBG. Moreover, plant density was a determinant factor related to active biomass production and cannabinoids contents, PD3 representing a suitable strategy to maximize the cannabinoids production minimizing the requirements of rooted apical cuttings. These results allowed concluding that these new hemp cultivars together with the adopted agronomic practices in this experience would be very appropriate for CBD and CBG productions, being determinant to consider the plant density and the cultivar for both studied chemotypes.Under the effects of climate change new drought tolerant crops are imperative to introduce in irrigated agricultural areas of Mediterranean countries. In this sense, hemp (Cannabis sativa L.) represents an alternative in many semi-arid agricultural areas of Mediterranean basin because of its low water requirements and cost effectiveness when it is developed under non controlled conditions. The aim of this work was to evaluate the potential yield of five new hemp varieties (Sara, Pilar, Aida, Theresa, and Juani) cultivated under high tunnel conditions in a semi-arid Mediterranean area, and also to study the effect of plant density on active biomass production and cannabinoids biosynthesis (cannabidiol, CBD and cannabigerol, CBG) at different plant positions. The trial was conducted under plastic macro-tunnels during two seasons (2014 and 2015), from May to October. The agronomic response and the chemical profiles of the studied varieties were evaluated at the end of each season. Moreover, it was monitored the differentiation in terms of active biomass production and cannabinoids biosynthesis in different plant organ positions (at upper, medium, and lower). Additionally, during the second season, three different plant densities (PD1, 9,777; PD2, 7,333; and PD3, 5,866 plants· ha-1) were tested in order to define the the best of them for maximizing CBD and CBG productions. The findings highlighted significant differences in yield between cultivars within the CBD and CBG. Moreover, plant density was a determinant factor related to active biomass production and cannabinoids contents, PD3 representing a suitable strategy to maximize the cannabinoids production minimizing the requirements of rooted apical cuttings. These results allowed concluding that these new hemp cultivars together with the adopted agronomic practices in this experience would be very appropriate for CBD and CBG productions, being determinant to consider the plant density and the cultivar for both studied chemotypes

    Conservation Agriculture as a Sustainable System for Soil Health: A Review

    Get PDF
    Soil health is a term used to describe the general state or quality of soil, and in an agroecosystem, soil health can be defined as the ability of the soil to respond to agricultural practices in a way that sustainably supports both agricultural production and the provision of other ecosystem services. Conventional agricultural practices cause deterioration in soil quality, increasing its compaction, water erosion, and salinization and decreasing soil organic matter, nutrient content, and soil biodiversity, which negatively influences the productivity and long-term sustainability of the soil. Currently, there are many evidences throughout the world that demonstrate the capability of conservation agriculture (CA) as a sustainable system to overcome these adverse effects on soil health, to avoid soil degradation and to ensure food security. CA has multiple beneficial effects on the physical, chemical, and biological properties of soil. In addition, CA can reduce the negative impacts of conventional agricultural practices on soil health while conserving the production and provision of soil ecosystem services. Today, agricultural development is facing unprecedented challenges, and CA plays a significant role in the sustainability of intensive agriculture. This review will discuss the impact of conservation agricultural practices on soil health and their role in agricultural sustainability

    Can Sustained Deficit Irrigation Save Water and Meet the Quality Characteristics of Mango?

    Get PDF
    Mango is one of the most cultivated tropical fruits worldwide and one of few drought-tolerant plants. Thus, in this study the effect of a sustained deficit irrigation (SDI) strategy on mango yield and quality was assessed with the aim of reducing irrigation water in mango crop. A randomized block design with four treatments was developed: (i) full irrigation (FI), assuring the crop’s water needs, and three levels of SDI receiving 75%, 50%, and 33% of irrigation water (SDI75, SDI50, and SDI33). Yield, morphology, color, titratable acidity (TA), total soluble solids (TSS), organic acids (OA), sugars, minerals, fiber, antioxidant activity (AA), and total phenolic content (TPC) were analyzed. The yield was reduced in SDI conditions (8%, 11%, and 20% for SDI75, SDI50, and SDI33, respectively), but the irrigation water productivity was higher in all SDI regimes. SDI significantly reduced the mango size, with SDI33 generating the smallest mangoes. Peel color significantly changed after 13 days of ripening, with SDI75 being the least ripe. The TA, AA, and citric acid were higher in SDI75, while the TPC and fiber increased in all SDI levels. Consequently, SDI reduced the mango size but increased the functionality of samples, without a severe detrimental effect on the yield

    Soil-management strategies in organic almond orchards: implications for soil rehabilitation and nut quality

    Get PDF
    The implementation of soil conservation measures is essential to promote sustainable crop production in the Mediterranean region. In an organic rainfed almond orchard located in Lanjarón (SE, Spain), a study carried out during 2016–2021 analyzed the influence of different soil management strategies (SMSs) (TT, traditional tillage; NT, no tillage; VF, cover of Vicia faba; VS, cover of Vicia sativa; VS-VE, cover of Vicia sativa and Vicia ervilia) on some selected physical (bulk density, available water content, and aggregate stability), chemical (pH, electrical conductivity, soil-organic content, N, P, K, and micronutrients), and biological (microbial activity) soil properties, relevant to soil health, and their implications for yield and almond quality (physical and chemical). Our results showed that the SMS with legume cover improves soil properties, which had a favorable effect on soil health. The mean almond yield was not significantly affected by the SMS applied, being 315.9, 256.4, 229.1, 212.5, and 176.6 kg ha−1 year−1 for TT, VF, VS-VE, VS, and NT, respectively. Regarding the almond nut quality, the strategy based on implementation of legume cover increased the almond antioxidant activity and the total polyphenol content, which would improve their nutritional value. Here we showed how the use of sustainable SMSs improved the soil properties compared to traditional tillage in rainfed organic almonds, allowing the long-term sustainability of agroecosystems while at the same time obtaining higher nutritional quality almonds

    Management of service crops for the provision of ecosystem services in vineyards: A review

    Get PDF
    Service crops are crops grown with the aim of providing non-marketed ecosystem services, i.e. differing from food, fiber and fuel production. Vineyard soils face various agronomic issues such as poor organic carbon levels, erosion, fertility losses, and numerous studies have highlighted the ability of service crops to address these issues. In addition to their ability to increase soil organic matter and fertility, and reduce runoff and erosion processes, service crops provide a large variety of ecosystem services in vineyards such as weed control, pest and disease regulation, water supply, water purification, improvement of field trafficability and maintenance of soil biodiversity. However, associating service crops with grapevines may also generate disservices and impair grape production: competition for soil resources with the grapevine is often highlighted to reject such association. Consequently, vinegrowers have to find a balance between services and disservices, depending on local soil and climate conditions, on their objectives of grape production and on the nature and temporality of the ecosystem services they expect during the grapevine cycle. This study proposes a review of the services and disservices provided by service crops in vineyards, and a framework for their management. Vinegrowers’ production objectives and pedoclimatic constraints form the preliminary stage to consider before defining a strategy of service crop management. This strategy assembles management options such as the choice of species, its spatial distribution within the vineyard, the timing of its installation, maintenance and destruction. These management options, defined for both annual and long-term time scales, form action levers which may impact cropping system functioning. Finally, we underline the importance of implementing an adaptive strategy at the seasonal time scale. Such tactical management allows adapting the cropping system to observed climate and state of the biophysical system during the grapevine cycle, in order to provide targeted services and achieve satisfactory production objectives
    corecore