191 research outputs found

    Collisional excitation rate coefficients of N2H+ by He

    Get PDF
    Using a recoupling technique with close-coupling spin-free calculations de-excitation rate coefficients are obtained among hyperfine transitions for He colliding with N2H+. A recently determined potential energy surface suitable for scattering calculations is used to investigate rate coefficients for temperatures between 5 and 50 K, and for the seven lowest rotational levels of N2H+. Fitting functions are provided for the Maxwellian averaged opacity tensors and for the rotational de-excitation collisional rate coefficients. The fitting functions for the opacity tensors can be used to calculate hyperfine (de)-excitation rate coefficients among elastic and inelastic rotational levels, and among the corresponding magnetic sublevels of the hyperfine structure. Certain dynamical approximations are investigated and found to be invali

    Collisional excitation of water by hydrogen atoms

    Full text link
    We present quantum dynamical calculations that describe the rotational excitation of H2_2O due to collisions with H atoms. We used a recent, high accuracy potential energy surface, and solved the collisional dynamics with the close-coupling formalism, for total energies up to 12 000 cm1^{-1}. From these calculations, we obtained collisional rate coefficients for the first 45 energy levels of both ortho- and para-H2_2O and for temperatures in the range T = 5-1500 K. These rate coefficients are subsequently compared to the values previously published for the H2_2O / He and H2_2O / H2_2 collisional systems. It is shown that no simple relation exists between the three systems and that specific calculations are thus mandatory

    The Excitation of N2_2H+^+ in Interstellar Molecular Clouds. I - Models

    Get PDF
    We present LVG and non-local radiative transfer calculations involving the rotational and hyperfine structure of the spectrum of N2_2H+^+ with collisional rate coefficients recently derived by us. The goal of this study is to check the validity of the assumptions made to treat the hyperfine structure and to study the physical mechanisms leading to the observed hyperfine anomalies. We find that the usual hypothesis of identical excitation temperatures for all hyperfine components of the JJ=1-0 transition is not correct within the range of densities existing in cold dense cores, i.e., a few 104^4 \textless n(H2_2) \textless a few 106^6 cm3^{-3}. This is due to different radiative trapping effects in the hyperfine components. Moreover, within this range of densities and considering the typical abundance of N2_2H+^+, the total opacity of rotational lines has to be derived taking into account the hyperfine structure. The error made when only considering the rotational energy structure can be as large as 100%. Using non-local models we find that, due to saturation, hyperfine anomalies appear as soon as the total opacity of the JJ=1-0 transition becomes larger than \simeq 20. Radiative scattering in less dense regions enhance these anomalies, and particularly, induce a differential increase of the excitation temperatures of the hyperfine components. This process is more effective for the transitions with the highest opacities for which emerging intensities are also reduced by self-absorption effects. These effects are not as critical as in HCO+^+ or HCN, but should be taken into account when interpreting the spatial extent of the N2_2H+^+ emission in dark clouds.Comment: 13 pages, 12 figure

    N2H+ and N2D+ in interstellar molecular clouds. II- Observations

    Get PDF
    We present observations of the JJ=1--0, 2--1, and 3--2 rotational transitions of N2_2H+^+ and N2_2D+^+ towards a sample of prototypical dark clouds. The data have been interpreted using non--local radiative transfer models.Comment: 12 pages, 18 figure

    Physical conditions in the ISM towards HD185418

    Full text link
    We have developed a complete model of the hydrogen molecule as part of the spectral simulation code Cloudy. Our goal is to apply this to spectra of high-redshift star-forming regions where H2 absorption is seen, but where few other details are known, to understand its implication for star formation. The microphysics of H2 is intricate, and it is important to validate these numerical simulations in better-understood environments. This paper studies a well-defined line-of-sight through the Galactic interstellar medium (ISM) as a test of the microphysics and methods we use. We present a self-consistent calculation of the observed absorption-line spectrum to derive the physical conditions in the ISM towards HD185418, a line-of-sight with many observables. We deduce density, temperature, local radiation field, cosmic ray ionization rate, chemical composition and compare these conclusions with conditions deduced from analytical calculations. We find a higher density, similar abundances, and require a cosmic ray flux enhanced over the Galactic background value, consistent with enhancements predicted by MHD simulations.Comment: 31 pages, accepted for publication in Ap

    On the frequency of N2H+ and N2D+

    Full text link
    Context : Dynamical studies of prestellar cores search for small velocity differences between different tracers. The highest radiation frequency precision is therefore required for each of these species. Aims : We want to adjust the frequency of the first three rotational transitions of N2H+ and N2D+ and extrapolate to the next three transitions. Methods : N2H+ and N2D+ are compared to NH3 the frequency of which is more accurately known and which has the advantage to be spatially coexistent with N2H+ and N2D+ in dark cloud cores. With lines among the narrowests, and N2H+ and NH3 emitting region among the largests, L183 is a good candidate to compare these species. Results : A correction of ~10 kHz for the N2H+ (J:1-0) transition has been found (~0.03 km/s) and similar corrections, from a few m/s up to ~0.05 km/s are reported for the other transitions (N2H+ J:3-2 and N2D+ J:1-0, J:2-1, and J:3-2) compared to previous astronomical determinations. Einstein spontaneous decay coefficients (Aul) are included

    On the influence of collisional rate coefficients on the water vapour excitation

    Full text link
    Water is a key molecule in many astrophysical studies. Its high dipole moment makes this molecule to be subthermally populated under the typical conditions of most astrophysical objects. This motivated the calculation of various sets of collisional rate coefficients (CRC) for H2_2O (with He or H2_2) which are necessary to model its rotational excitation and line emission. We performed accurate non--local non--LTE radiative transfer calculations using different sets of CRC in order to predict the line intensities from transitions that involve the lowest energy levels of H2_2O (E << 900 K). The results obtained from the different CRC sets are then compared using line intensity ratio statistics. For the whole range of physical conditions considered in this work, we obtain that the intensities based on the quantum and QCT CRC are in good agreement. However, at relatively low H2_2 volume density (nn(H2_2) << 107^7 cm3^{-3}) and low water abundance (χ\chi(H2_2O) << 106^{-6}), these physical conditions being relevant to describe most molecular clouds, we find differences in the predicted line intensities of up to a factor of \sim 3 for the bulk of the lines. Most of the recent studies interpreting early Herschel Space Observatory spectra used the QCT CRC. Our results show that although the global conclusions from those studies will not be drastically changed, each case has to be considered individually, since depending on the physical conditions, the use of the QCT CRC may lead to a mis--estimate of the water vapour abundance of up to a factor of \sim 3

    Quasi-classical rate coefficient calculations for the rotational (de)excitation of H2O by H2

    Full text link
    The interpretation of water line emission from existing observations and future HIFI/Herschel data requires a detailed knowledge of collisional rate coefficients. Among all relevant collisional mechanisms, the rotational (de)excitation of H2O by H2 molecules is the process of most interest in interstellar space. To determine rate coefficients for rotational de-excitation among the lowest 45 para and 45 ortho rotational levels of H2O colliding with both para and ortho-H2 in the temperature range 20-2000 K. Rate coefficients are calculated on a recent high-accuracy H2O-H2 potential energy surface using quasi-classical trajectory calculations. Trajectories are sampled by a canonical Monte-Carlo procedure. H2 molecules are assumed to be rotationally thermalized at the kinetic temperature. By comparison with quantum calculations available for low lying levels, classical rates are found to be accurate within a factor of 1-3 for the dominant transitions, that is those with rates larger than a few 10^{-12}cm^{3}s^{-1}. Large velocity gradient modelling shows that the new rates have a significant impact on emission line fluxes and that they should be adopted in any detailed population model of water in warm and hot environments.Comment: 8 pages, 2 figures, 1 table (the online material (4 tables) can be obtained upon request to [email protected]

    Rotational Excitation of HC_3N by H_2 and He at low temperatures

    Full text link
    Rates for rotational excitation of HC3N by collisions with He atoms and H2 molecules are computed for kinetic temperatures in the range 5-20K and 5-100K, respectively. These rates are obtained from extensive quantum and quasi-classical calculations using new accurate potential energy surfaces (PES)

    UV femtosecond laser cleaning of encrusted historical stained-glasses

    Get PDF
    Laser irradiation enables the removal of unwanted surface deposits from different materials in a safe and controllable manner. Laser parameters should be carefully selected to achieve the removal of the target contaminants without inducing damage to the substrate. Ultra-short pulse lasers have opened new opportunities for safe and controlled decontamination of cultural heritage materials because the thickness of material that is affected by the laser is limited. In this study, an ultraviolet femtosecond pulsed laser was used for the removal of unwanted encrustation formed on the surface of an historical colourless stained-glass sample from the Cuenca Cathedral in Spain. One of the sides of this glass exhibits a reddish-brown grisaille that also has to be preserved. A laser cleaning process has been designed to avoid heat accumulation while controlling the thickness of ablated material. In this context, a multi-step process was selected in order to be able to eliminate, in a controlled way, the crust layer without damaging the grisaille layer, or the glass substrate. In this case, laser irradiation in beam scanning mode with a pulse repetition frequency of 10 kHz proved to be effective for the safe cleaning of the glass. The latter was analysed before and after laser cleaning by optical and confocal microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray fluorescence, and Raman spectroscopy, confirming that the crust layer was effectively eliminated without damaging the surface
    corecore