179 research outputs found

    Experimens with Stark-decelerated and trapped molecules

    Get PDF

    Electrostatic trapping of metastable NH molecules

    Get PDF
    We report on the Stark deceleration and electrostatic trapping of 14^{14}NH (a1Δa ^1\Delta) radicals. In the trap, the molecules are excited on the spin-forbidden A3Πa1ΔA ^3\Pi \leftarrow a ^1\Delta transition and detected via their subsequent fluorescence to the X3ΣX ^3\Sigma^- ground state. The 1/e trapping time is 1.4 ±\pm 0.1 s, from which a lower limit of 2.7 s for the radiative lifetime of the a1Δ,v=0,J=2a ^1\Delta, v=0,J=2 state is deduced. The spectral profile of the molecules in the trapping field is measured to probe their spatial distribution. Electrostatic trapping of metastable NH followed by optical pumping of the trapped molecules to the electronic ground state is an important step towards accumulation of these radicals in a magnetic trap.Comment: replaced with final version, added journal referenc

    Loading Stark-decelerated molecules into electrostatic quadrupole traps

    Get PDF
    Beams of neutral polar molecules in a low-field seeking quantum state can be slowed down using a Stark decelerator, and can subsequently be loaded and confined in electrostatic quadrupole traps. The efficiency of the trap loading process is determined by the ability to couple the decelerated packet of molecules into the trap without loss of molecules and without heating. We discuss the inherent difficulties to obtain ideal trap loading, and describe and compare different trap loading strategies. A new "split-endcap" quadrupole trap design is presented that enables improved trap loading efficiencies. This is experimentally verified by comparing the trapping of OH radicals using the conventional and the new quadrupole trap designs

    Slowing polar molecules using a wire Stark decelerator

    Get PDF
    We have designed and implemented a new Stark decelerator based on wire electrodes, which is suitable for ultrahigh vacuum applications. The 100 deceleration stages are fashioned out of 0.6 mm diameter tantalum and the array's total length is 110 mm, approximately 10 times smaller than a conventional Stark decelerator with the same number of electrode pairs. Using the wire decelerator, we have removed more than 90% of the kinetic energy from metastable CO molecules in a beam.Comment: updated version, added journal referenc

    Optical pumping of trapped neutral molecules by blackbody radiation

    Get PDF
    Optical pumping by blackbody radiation is a feature shared by all polar molecules and fundamentally limits the time that these molecules can be kept in a single quantum state in a trap. To demonstrate and quantify this, we have monitored the optical pumping of electrostatically trapped OH and OD radicals by room-temperature blackbody radiation. Transfer of these molecules to rotationally excited states by blackbody radiation at 295 K limits the 1/e1/e trapping time for OH and OD in the X2Π3/2,v=0,J=3/2(f)X^{2}\Pi_{3/2},v''=0,J''=3/2(f) state to 2.8 s and 7.1 s, respectively.Comment: corrected small mistakes; added journal reference

    An electrostatic elliptical mirror for neutral polar molecules

    Get PDF
    Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.Comment: 5 pages, 4 figure

    Stark deceleration of CaF molecules in strong- and weak-field seeking states

    Full text link
    We report the Stark deceleration of CaF molecules in the strong-field seeking ground state and in a weak-field seeking component of a rotationally-excited state. We use two types of decelerator, a conventional Stark decelerator for the weak-field seekers, and an alternating gradient decelerator for the strong-field seekers, and we compare their relative merits. We also consider the application of laser cooling to increase the phase-space density of decelerated molecules.Comment: 10 pages, 8 figure

    Observation of Quantum Effects in sub Kelvin Cold Reactions

    Full text link
    There has been a long-standing quest to observe chemical reactions at low temperatures where reaction rates and pathways are governed by quantum mechanical effects. So far this field of Quantum Chemistry has been dominated by theory. The difficulty has been to realize in the laboratory low enough collisional velocities between neutral reactants, so that the quantum wave nature could be observed. We report here the first realization of merged neutral supersonic beams, and the observation of clear quantum effects in the resulting reactions. We observe orbiting resonances in the Penning ionization reaction of argon and molecular hydrogen with metastable helium leading to a sharp increase in the absolute reaction rate in the energy range corresponding to a few degrees kelvin down to 10 mK. Our method is widely applicable to many canonical chemical reactions, and will enable a breakthrough in the experimental study of Quantum Chemistry
    corecore