40 research outputs found

    MEK inhibition is a promising therapeutic strategy for MLL-rearranged infant acute lymphoblastic leukemia patients carrying RAS mutations

    Get PDF
    Acute lymphoblastic leukemia (ALL) in infants is an aggressive malignancy with a poor clinical outcome, and is characterized by translocations of the Mixed Lineage Leukemia (MLL) gene. Previously, we identified RAS mutations in 14-24% of infant ALL patients, and showed that the presence of a RAS mutation decreased the survival chances even further. We hypothesized that targeting the RAS signaling pathway could be a therapeutic strategy for RAS-mutant infant ALL patients. Here we show that the MEK inhibitors Trametinib, Selumetinib and MEK162 severely impair primary RAS-mutant MLL-rearranged infant ALL cells in vitro. While all RAS-mutant samples were sensitive to MEK inhibitors, we found both sensitive and resistant samples among RAS-wildtype cases. We confirmed enhanced RAS pathway signaling in RASmutant samples, but found no apparent downstream over-activation in the wildtype samples. However, we did confirm that MEK inhibitors reduced p-ERK levels, and induced apoptosis in the RAS-mutant MLL-rearranged ALL cells. Finally, we show that MEK inhibition synergistically enhances prednisolone sensitivity,

    Identification of genes transcriptionally responsive to the loss of MLL fusions in MLL-rearranged acute lymphoblastic leukemia

    Get PDF
    MLL-rearranged acute lymphoblastic leukemia (ALL) in infants (<1 year) is characterized by high relapse rates and a dismal prognosis. To facilitate the discovery of novel therapeutic targets, we here searched for genes directly influenced by the repression of various MLL fusions. Methods For this, we performed gene expression profiling after siRNA-mediated repression of MLLAF4, MLL-ENL, and AF4-MLL in MLL -rearranged ALL cell line models. The obtained results were compared with various already established gene signatures including those consisting of known MLL-AF4 target genes, or those associated with primary MLL-rearranged infant ALL samples. Results Genes that were down-regulated in response to the repression of MLL-AF4 and MLL-ENL appeared characteristically expressed in primary MLL-rearranged infant ALL samples, and often represented known MLL-AF4 targets genes. Genes that were up-regulated in response to the repression of MLL-AF4 and MLL-ENL often represented genes typically silenced by promoter hypermethylation in MLL-rearranged infant ALL. Genes that were aff

    Smaller classes promote equitable student participation in STEM

    Get PDF
    Under embargo until: 2020-07-24As science, technology, engineering, and mathematics (STEM) classrooms in higher education transition from lecturing to active learning, the frequency of student interactions in class increases. Previous research documents a gender bias in participation, with women participating less than would be expected on the basis of their numeric proportions. In the present study, we asked which attributes of the learning environment contribute to decreased female participation: the abundance of in-class interactions, the diversity of interactions, the proportion of women in class, the instructor's gender, the class size, and whether the course targeted lower division (first and second year) or upper division (third or fourth year) students. We calculated likelihood ratios of female participation from over 5300 student–instructor interactions observed across multiple institutions. We falsified several alternative hypotheses and demonstrate that increasing class size has the largest negative effect. We also found that when the instructors used a diverse range of teaching strategies, the women were more likely to participate after small-group discussions.acceptedVersio

    Environmental Salinity Determines the Specificity and Need for Tat-Dependent Secretion of the YwbN Protein in Bacillus subtilis

    Get PDF
    Twin-arginine protein translocation (Tat) pathways are required for transport of folded proteins across bacterial, archaeal and chloroplast membranes. Recent studies indicate that Tat has evolved into a mainstream pathway for protein secretion in certain halophilic archaea, which thrive in highly saline environments. Here, we investigated the effects of environmental salinity on Tat-dependent protein secretion by the Gram-positive soil bacterium Bacillus subtilis, which encounters widely differing salt concentrations in its natural habitats. The results show that environmental salinity determines the specificity and need for Tat-dependent secretion of the Dyp-type peroxidase YwbN in B. subtilis. Under high salinity growth conditions, at least three Tat translocase subunits, namely TatAd, TatAy and TatCy, are involved in the secretion of YwbN. Yet, a significant level of Tat-independent YwbN secretion is also observed under these conditions. When B. subtilis is grown in medium with 1% NaCl or without NaCl, the secretion of YwbN depends strictly on the previously described “minimal Tat translocase” consisting of the TatAy and TatCy subunits. Notably, in medium without NaCl, both tatAyCy and ywbN mutants display significantly reduced exponential growth rates and severe cell lysis. This is due to a critical role of secreted YwbN in the acquisition of iron under these conditions. Taken together, our findings show that environmental conditions, such as salinity, can determine the specificity and need for the secretion of a bacterial Tat substrate

    Large-scale ICU data sharing for global collaboration: the first 1633 critically ill COVID-19 patients in the Dutch Data Warehouse

    Get PDF

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Internet-based self-help treatment for depression in multiple sclerosis: study protocol of a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Depression in MS patients is frequent but often not treated adequately. An important underlying factor may be physical limitations that preclude face-to-face contact. Internet-based treatment showed to be effective for depressive symptoms in general and could thus be a promising tool for treatment in MS.</p> <p>Methods/design</p> <p>Here, we present a study protocol to investigate the effectiveness of a 5 week Internet-based self-help problem solving treatment (PST) for depressive symptoms in MS patients in a randomized controlled trial. We aim to include 166 MS patients with moderate to severe depressive symptoms who will be randomly assigned to an Internet-based intervention (with or without supportive text-messages) or waiting list control group. The primary outcome is the change in depressive symptoms defined by a change in the sum score on the Beck Depression Inventory (BDI-II). Secondary outcomes will include measures of anxiety, fatigue, cognitive functioning, physical and psychological impact of MS, quality of life, problem solving skills, social support, mastery, satisfaction and compliance rate. Assessments will take place at baseline (T0), within a week after the intervention (T1), at four months (T2) and at ten months follow-up (T3: only the intervention group). The control group will be measured at the same moments in time. Analysis will be based on the intention-to-treat principle.</p> <p>Discussion</p> <p>If shown to be effective, Internet-based PST will offer new possibilities to reach and treat MS patients with depressive symptoms and to improve the quality of care.</p> <p>Trial Registration</p> <p>The Dutch Cochrane Center, NTR2772</p
    corecore