22 research outputs found

    Syndromic craniosynostosis: sleeping with the enemy

    Get PDF
    Craniosynostosis refers to the premature fusion of one or several calvarian sutures. For transient skull distortion during birth, as well as to facilitate growth of the brain, the seven bones of the calvarian are separated by six major calvarian sutures (Figure 1). The sutures function as growth centers. The center of the suture deposits proliferating cells, which gradually undergo osteogenetic differentiation. Migration towards the skull bone results in growth of the cranial vault. This is an important requisite to allow the brain quadrupling its volume during the first two years of life. The posterior fontanel will close first at an age of two months. The metopic suture will close next within the first year of life, followed by closure of the anterior fontanel at the age of two years. Although the other sutures only close in adulthood, they lose their function in skull growth after the age of six years

    Apert syndrome: the Paris and Rotterdam philosophy

    Get PDF
    Introduction: Apert syndrome is a rare type of syndromic craniosynostosis. Patients have an explicit phenotype with craniofacial dysmorphologies and severe symmetrical syndactyly of the hands and feet. This review includes background information about the syndrome and several aspects of the treatment. Areas covered: The cause of Apert syndrome is found in unique mutations in the Fibroblast Growth Factors Receptor (FGFR) 2 gene in 99%. It results in cranial suture fusion, craniofacial dysmorphologies and severe symmetrical syndactyly of the hands and feet. Patients with Apert syndrome are at risk for mental retardation, mobility impairment and intracranial hypertension (ICHT). This is the result of a complex interaction between (1) abnormal skull growth, (2) ventriculomegaly, (3) venous outflow obstruction and (4) obstructive sleep apnea (OSA). Mental retardation is mainly determined by the FGFR2 mutation and treatment is directed at protecting the intrinsic potential of neurocognition. Expert Opinion: To prevent ICHT, we prefer an occipital expansion in the first year of life. Screening on ICHT and its underlying causes is necessary at least until the age of ten by means of skull circumference measurements, fundoscopy, optical coherence tomography, MRI and polysomnography. Multicentre studies on long-term outcome are required to validate the rationale of different clinical protocols

    Imminent fall risk after fracture

    Get PDF
    Rationale: Adults with a recent fracture have a high imminent risk of a subsequent fracture. We hypothesise that, like subsequent fracture risk, fall risk is also highest immediately after a fracture. This study aims to assess if fall risk is time-dependent in subjects with a recent fracture compared to subjects without a fracture. Methods: This retrospective matched cohort study used data from the UK Clinical Practice Research Datalink GOLD. All subjects ≥50 years with a fracture between 1993 and 2015 were identified and matched one-to-one to fracture-free controls based on year of birth, sex and practice. The cumulative incidence and relative risk (RR) of a first fall was calculated at various time intervals, with mortality as competing risk. Subsequently, analyses were stratified according to age, sex and type of index fracture. Results: A total of 624,460 subjects were included; 312,230 subjects with an index fracture, matched to 312,230 fracture-free controls (71% females, mean age 70 ± 12, mean follow-up 6.5 ± 5 years). The RR of falls was highest in the first year after fracture compared to fracture-free controls; males had a 3-fold and females a 2-fold higher risk. This imminent fall risk was present in all age and fracture types and declined over time. A concurrent imminent fracture and mortality risk were confirmed. Conclusion/Discussion: This study demonstrates an imminent fall risk in the first years after a fracture in all age and fracture types. This underlines the need for early fall risk assessment and prevention strategies in 50+ adults with a recent fracture

    Integrating genetic regulation and single-cell expression with GWAS prioritizes causal genes and cell types for glaucoma

    Get PDF
    Primary open-angle glaucoma (POAG), characterized by retinal ganglion cell death, is a leading cause of irreversible blindness worldwide. However, its molecular and cellular causes are not well understood. Elevated intraocular pressure (IOP) is a major risk factor, but many patients have normal IOP. Colocalization and Mendelian randomization analysis of &gt;240 POAG and IOP genome-wide association study (GWAS) loci and overlapping expression and splicing quantitative trait loci (e/sQTLs) in 49 GTEx tissues and retina prioritizes causal genes for 60% of loci. These genes are enriched in pathways implicated in extracellular matrix organization, cell adhesion, and vascular development. Analysis of single-nucleus RNA-seq of glaucoma-relevant eye tissues reveals that the POAG and IOP colocalizing genes and genome-wide associations are enriched in specific cell types in the aqueous outflow pathways, retina, optic nerve head, peripapillary sclera, and choroid. This study nominates IOP-dependent and independent regulatory mechanisms, genes, and cell types that may contribute to POAG pathogenesis.</p

    Integrating genetic regulation and single-cell expression with GWAS prioritizes causal genes and cell types for glaucoma

    Get PDF
    Primary open-angle glaucoma (POAG), characterized by retinal ganglion cell death, is a leading cause of irreversible blindness worldwide. However, its molecular and cellular causes are not well understood. Elevated intraocular pressure (IOP) is a major risk factor, but many patients have normal IOP. Colocalization and Mendelian randomization analysis of &gt;240 POAG and IOP genome-wide association study (GWAS) loci and overlapping expression and splicing quantitative trait loci (e/sQTLs) in 49 GTEx tissues and retina prioritizes causal genes for 60% of loci. These genes are enriched in pathways implicated in extracellular matrix organization, cell adhesion, and vascular development. Analysis of single-nucleus RNA-seq of glaucoma-relevant eye tissues reveals that the POAG and IOP colocalizing genes and genome-wide associations are enriched in specific cell types in the aqueous outflow pathways, retina, optic nerve head, peripapillary sclera, and choroid. This study nominates IOP-dependent and independent regulatory mechanisms, genes, and cell types that may contribute to POAG pathogenesis.</p

    Differences in clinical presentation of primary open-angle glaucoma between African and European populations

    Get PDF
    Purpose: Primary open-angle glaucoma (POAG) has been reported to occur more frequently in Africans, and to follow a more severe course compared to Europeans. We aimed to describe characteristics of POAG presentation and treatment across three ethnic groups from Africa and one from Europe. Methods: We ascertained 151 POAG patients from South African Coloured (SAC) and 94 South African Black (SAB) ethnicity from a university hospital in South Africa. In Tanzania, 310 patients were recruited from a university hospital and a referral hospital. In the Netherlands, 241 patients of European ancestry were included. All patients were over 35 years old and had undergone an extensive ophthalmic examination. Patients were diagnosed according to the ISGEO criteria. A biogeographic ancestry analysis was performed to estimate the proportion of genetic African ancestry (GAA). Results: The biogeographic ancestry analysis showed that the median proportion of GAA was 97.6% in Tanzanian, 100% in SAB, 34.2% in SAC and 1.5% in Dutch participants. Clinical characteristics at presentation for Tanzanians, SAB, SAC and Dutch participants, respectively: mean age: 63, 57, 66, 70 years (p < 0.001); visual acuity in the worse eye: 1.78, 1.78, 0.3, 0.3 LogMAR (p < 0.001); maximum intraocular pressure of both eyes: 36, 34, 29, 29 mmHg (panova < 0.001); maximum vertical cup to disc ratio (VCDR) of both eyes: 0.90, 0.90, 0.84, 0.83 (p < 0.001); mean central corneal thickness: 506, 487, 511, 528 μm (p < 0.001). Fourteen percent of Tanzanian patients presented with blindness (<3/60 Snellen) in the better eye in contrast to only 1% in the Dutch. Conclusion: In this multi-ethnic comparative study, Sub-Saharan Africans present at a younger age with lower visual acuity, higher IOP, larger VCDR, than SAC and Dutch participants. This indicates the more progressive and destructive course in Sub-Saharan Africans

    Genome analysis and physiological comparison of Alicycliphilus denitrificans strains BC and K601T

    Get PDF
    The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.This research was supported by the Technology Foundation, the Applied Science Division (STW) of the Netherlands Organization for Scientific Research (NWO), project number 08053, the graduate school WIMEK (Wageningen Institute for Environment and Climate Research, which is part of SENSE Research School for Socio-Economic and Natural Sciences of the Environment, www.wimek-new.wur.nl and www.sense.nl), SKB (Dutch Centre for Soil Quality Management and Knowledge Transfer, www.skbodem.nl) and the Consolider project CSD-2007-00055. The research was incorporated in the TRIAS (TRIpartite Approaches 469 toward Soil systems processes) program (http://www.nwo.nl/en/research-and-results/programmes/alw/trias-tripartite-approach-to-soil-system-processes/index. html). Flávia Talarico Saia was supported by a FAPESP (the State of São Paulo Research Foundation) scholarship (2006-01997/5). The work conducted by the DOE JGI is supported by the Office of Science of the United States Department of Energy under contract number DE-AC02-05CH11231. Alfons Stams acknowledges support by an ERC (European Research Counsil) advanced grant (project 323009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics
    corecore