178 research outputs found

    Does the Community Reinvestment Act influence lending? an analysis of changes in bank low-income mortgage activity

    Get PDF
    Anecdotal evidence that the Community Reinvestment Act (CRA) influences the lending behavior of financial institutions has not been uniformly supported by empirical research. We revisit this issue by evaluating changes in low-income mortgage lending at commercial banks over the 1992-96 period. Our empirical results fail to support a hypothesis that banks respond to public and regulatory pressure exerted as a result of a downgrade in CRA rating by increasing low-income mortgage lending. The findings are consistent with the contention that during this period regulators stressed adjustments in the lending process of banks (e.g., documentation of lending program and efforts directed at targeted markets) more than lending performance. The findings underscore the importance of regulatory efforts made later in the decade to more closely link enforcement of the CRA to lending outcomes.Community Reinvestment Act of 1977 ; Mortgages ; Bank loans ; Financial institutions

    Effects Of Revisions To The CRA In 1995 On Regulatory Enforcement

    Get PDF
    Revisions to the Community Reinvestment Act (CRA) enacted in 1995 were intended to focus greater regulatory attention on objective assessments of CRA-targeted lending. To determine the effectiveness of the revisions, we examine CRA regulatory practices, 1990 through 2000, utilizing a sample of 25,601 bank examinations. Our empirical evidence indicates that CRA examination scheduling reflected CRA ratings and real estate loan levels in the period before, but not after, enactment of the revisions, and that examination intervals, particularly for small banks, lengthened. For a subsample of banks with substandard CRA ratings, changes in loan levels influenced their odds of recovery to a satisfactory rating after, but not before, enactment of the revisions

    A two-domain elevator mechanism for sodium/proton antiport

    Get PDF
    Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1, 3, for which both electron microscopy and crystal structures are available4, 5, 6. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein1, 4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur7. The only reported NhaA crystal structure so far is of the low pH inactivated form4. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding1, 8, 9 directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general

    Stagnant ice and age modelling in the Dome C region, Antarctica

    Get PDF
    The European Beyond EPICA project aims to extract a continuous ice core of up to 1.5 Ma, with a maximum age density of 20 kyr m-1 at Little Dome C (LDC). We present a 1D numerical model which calculates the age of the ice around Dome C. The model inverts for basal conditions and accounts either for melting or for a layer of stagnant ice above the bedrock. It is constrained by internal reflecting horizons traced in radargrams and dated using the EPICA Dome C (EDC) ice core age profile. We used three different radar datasets ranging from a 10 000 km2 airborne survey down to 5 km long ground-based radar transects over LDC. We find that stagnant ice exists in many places, including above the LDC relief where the new Beyond EPICA drill site (BELDC) is located. The modelled thickness of this layer of stagnant ice roughly corresponds to the thickness of the basal unit observed in one of the radar surveys and in the autonomous phase-sensitive radio-echo sounder (ApRES) dataset. At BELDC, the modelled stagnant ice thickness is 198±44 m and the modelled oldest age of ice is 1.45±0.16 Ma at a depth of 2494±30 m. This is very similar to all sites situated on the LDC relief, including that of the Million Year Ice Core project being conducted by the Australian Antarctic Division. The model was also applied to radar data in the area 10-15 km north of EDC (North Patch), where we find either a thin layer of stagnant ice (generally <60 m) or a negligible melt rate (<0.1 mm yr-1). The modelled maximum age at North Patch is over 2 Ma in most places, with ice at 1.5 Ma having a resolution of 9-12 kyr m-1, making it an exciting prospect for a future Oldest Ice drill site

    Brief Communication: New radar constraints support presence of ice older than 1.5 Ma at Little Dome C.

    Get PDF
    The area near Dome C, East Antarctica, is thought to be one of the most promising targets for recovering a continuous ice-core record spanning more than a million years. The European Beyond EPICA consortium has selected Little Dome C, an area ~35 km south-east of Concordia Station, to attempt to recover such a record. Here, we present the results of the final ice-penetrating radar survey used to refine the exact drill site. These data were acquired during the 2019–2020 Austral summer using a new, multi-channel high-resolution VHF radar operating in the frequency range of 170–230 MHz. This new instrument is able to detect reflections in the near-basal region, where previous surveys were unable to trace continuous horizons. The radar stratigraphy is used to transfer the timescale of the EPICA Dome C ice core (EDC) to the area of Little Dome C, using radar isochrones dating back past 600 ka. We use these data to derive the expected depth–age relationship through the ice column at the now-chosen drill site, termed BELDC. These new data indicate that the ice at BELDC is considerably older than that at EDC at the same depth, and that there is about 375 m of ice older than 600 ka at BELDC. Stratigraphy is well preserved to 2565 m, below which there is a basal unit with unknown properties. A simple ice flow model tuned to the isochrones suggests ages likely reach 1.5 Ma near 2525 m, ~40 m above the basal unit and ~240 m above the bed, with sufficient resolution (14±1 ka m−1) to resolve 41 ka glacial cycles

    Biochemical Properties of a Novel Cysteine Protease of Plasmodium vivax, Vivapain-4

    Get PDF
    Plasmodium vivax affects hundreds of millions each year and results in severe morbidity and mortality. Plasmodial cysteine proteases (CPs) play crucial roles during the progression of malaria since inhibition of these molecules impairs parasite growth. These CPs might be targeted for new antimalarial drugs. We characterized a novel P. vivax CP, vivapain-4 (VX-4), which appeared to evolve differentially among primate Plasmodium species. VX-4 showed highly unique substrate preference depending on surrounding micro-environmental pH. It effectively hydrolyzed benzyloxycarbonyl-Leu-Arg-4-methyl-coumaryl-7-amide (Z-Leu-Arg-MCA) and Z-Phe-Arg-MCA at acidic pH and Z-Arg-Arg-MCA at neutral pH. Three amino acids (Ala90, Gly157 and Glu180) that delineate the S2 pocket were found to be substituted in VX-4. Alteration of Glu180 abolished hydrolytic activity against Z-Arg-Arg-MCA at neutral pH, indicating Glu180 is intimately involved in the pH-dependent substrate preference. VX-4 hydrolyzed actin at neutral pH and hemoglobin at acidic pH, and participated in plasmepsin 4 activation at neutral/acidic pH. VX-4 was localized in the food vacuoles and cytoplasm of the erythrocytic stage of P. vivax. The differential substrate preferences depending on pH suggested a highly efficient mechanism to enlarge biological implications of VX-4, including hemoglobin degradation, maturation of plasmepsin, and remodeling of the parasite architecture during growth and development of P. vivax

    Type 2 diabetes – an autoinflammatory disease driven by metabolic stress

    Get PDF
    Type 2 diabetes has traditionally been viewed as a metabolic disorder characterised by chronic high glucose levels, insulin resistance, and declining insulin secretion from the pancreas. Modern lifestyle, with abundant nutrient supply and reduced physical activity, has resulted in dramatic increases in the rates of obesity-associated disease conditions, including diabetes. The associated excess of nutrients induces a state of systemic low-grade chronic inflammation that results from production and secretion of inflammatory mediators from the expanded pool of activated adipocytes. Here, we review the mechanisms by which obesity induces adipose tissue dysregulation, detailing the roles of adipose tissue secreted factors and their action upon other cells and tissues central to glucose homeostasis and type 2 diabetes. Furthermore, given the emerging importance of adipokines, cytokines and chemokines in disease progression, we suggest that type 2 diabetes should now be viewed as an autoinflammatory disease, albeit one that is driven by metabolic dysregulation

    Participation in Corporate Governance

    Full text link
    corecore