39 research outputs found

    Vorwort der Herausgeberinnen

    Get PDF

    The Grism lens-amplified survey from space (GLASS). VIII. The influence of the cluster properties on Halpha emitter galaxies at 0.3<z<0.7

    Get PDF
    Exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 high star forming galaxies in 10 clusters at 0.3< z <0.7. All these galaxies are likely restricted to first infall. In a companion paper we contrast the properties of field and cluster galaxies, whereas here we correlate the properties of H{\alpha} emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. H{\alpha} emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the H{\alpha} emission is offset with respect to the peak of the UV-continuum. We decompose this offsets into a radial and tangential component. The radial compo- nent points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations, i.e. the H{\alpha} emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Trends between H{\alpha} emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correla- tions between H{\alpha} morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.Comment: ApJ in press (16 pages, 8 figures

    The Grism Lens-Amplified Survey from Space (GLASS). V. Extent and spatial distribution of star formation in z~0.5 cluster galaxies

    Get PDF
    We present the first study of the spatial distribution of star formation in z~0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS0717.5+3745 and MACS1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 10^8-10^11 M_sun, and star formation rates in the range 1-20 M_sun/yr. Both in clusters and in the field, H{\alpha} is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside out growth. In ~20% of the cases, the H{\alpha} emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the H{\alpha} emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models and find no conclusive results. The diversity of morphologies and sizes observed in H_alpha illustrates the complexity of the environmental process that regulate star formation. Upcoming analysis of the full GLASS dataset will increase our sample size by almost an order of magnitude, verifying and strengthening the inference from this initial dataset.Comment: 18 pages, 15 figures, accepted for publication in Ap

    The evolution of the density of galaxy clusters and groups: denser environments at higher redshifts

    Get PDF
    We show that, observationally, the projected local density distribution in high-z clusters is shifted towards higher values compared to clusters at lower redshift. To search for the origin of this evolution, we analyze a sample of haloes selected from the Millennium Simulation and populated using semi-analytic models, investigating the relation between observed projected density and physical 3D density, using densities computed from the 10 and 3 closest neighbours. Both observationally and in the simulations, we study the relation between number of cluster members and cluster mass, and number of members per unit of cluster mass. We find that the observed evolution of projected densities reflects a shift to higher values of the physical 3D density distribution. In turn, this must be related with the globally higher number of galaxies per unit of cluster volume N/V in the past. We show that the evolution of N/V is due to a combination of two effects: a) distant clusters were denser in dark matter (DM) simply because the DM density within R_{200} (~the cluster virial radius) is defined to be a fixed multiple of the critical density of the Universe, and b) the number of galaxies per unit of cluster DM mass is remarkably constant both with redshift and cluster mass if counting galaxies brighter than a passively evolving magnitude limit. Our results highlight that distant clusters were much denser environments than today's clusters, both in galaxy number and mass, and that the density conditions felt by galaxies in virialized systems do not depend on the system mass.Comment: accepted for publication in MNRA

    Cluster Galaxies Die Hard

    Full text link
    We investigate how the specific star formation rates of galaxies of different masses depend on cluster-centric radius and on the central/satellite dichotomy in both field and cluster environments. Recent data from a variety of sources, including the cluster catalogue of von der Linden et al. are compared to the semi-analytic models of De Lucia & Blaizot. We find that these models predict too many passive satellite galaxies in clusters, too few passive central galaxies with low stellar masses, and too many passive central galaxies with high masses. We then outline a series of modifications to the model necessary to solve these problems: a) Instead of instantaneous stripping of the external gas reservoir after a galaxy becomes a satellite, the gas supply is assumed to decrease at the same rate that the surrounding halo loses mass due to tidal stripping, b) The AGN feedback efficiency is lowered to bring the fraction of massive passive centrals in better agreement with the data. We also allow for radio mode AGN feedback in satellite galaxies. c) We assume that satellite galaxies residing in host haloes with masses below 10^12 M_sun do not undergo any stripping. We highlight the fact that in low mass galaxies, the external reservoir is composed primarily of gas that has been expelled from the galactic disk by supernovae driven winds. This gas must remain available as a future reservoir for star formation, even in satellite galaxies. Finally, we present a simple recipe for the stripping of gas and dark matter in satellites that can be used in models where subhalo evolution is not followed in detail.Comment: Models of ram-pressure stripping and some extra discussion added, references added. Conclusions unchanged. 20 pages, 15 figures. Accepted for publication in MNRAS

    Multiple Images of a Highly Magnified Supernova Formed by an Early-Type Cluster Galaxy Lens

    Get PDF
    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z=0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z=1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses.Comment: Published in the 6 March 2015 issue of Science; 17 pages, 7 figures, and 3 tables including Supplementary Material

    PAX2 Regulates ADAM10 Expression and Mediates Anchorage-Independent Cell Growth of Melanoma Cells

    Get PDF
    PAX transcription factors play an important role during development and carcinogenesis. In this study, we investigated PAX2 protein levels in melanocytes and melanoma cells by Western Blot and immunofluorescence analysis and characterized the role of PAX2 in the pathogenesis of melanoma. In vitro we found weak PAX2 protein expression in keratinocytes and melanocytes. Compared to melanocytes increased PAX2 protein levels were detectable in melanoma cell lines. Interestingly, in tissue sections of melanoma patients nuclear PAX2 expression strongly correlated with nuclear atypia and the degree of prominent nucleoli, indicating an association of PAX2 with a more atypical cellular phenotype. In addition, with chromatin immunoprecipitation assay, PAX2 overexpression and PAX2 siRNA we present compelling evidence that PAX2 can regulate ADAM10 expression, a metalloproteinase known to play important roles in melanoma metastasis. In human tissue samples we found co-expression of PAX2 and ADAM10 in melanocytes of benign nevi and in melanoma cells of patients with malignant melanoma. Importantly, the downregulation of PAX2 by specific siRNA inhibited the anchorage independent cell growth and decreased the migratory and invasive capacity of melanoma cells. Furthermore, the downregulation of PAX2 abrogated the chemoresistance of melanoma cells against cisplatin, indicating that PAX2 expression mediates cell survival and plays important roles during melanoma progression

    The Rest-Frame Optical Luminosity Function of Cluster Galaxies at z<0.8 and the Assembly of the Cluster Red Sequence

    Full text link
    We present the rest-frame optical luminosity function (LF) of red sequence galaxies in 16 clusters at 0.4<z<0.8 drawn from the ESO Distant Cluster Survey (EDisCS). We compare our clusters to an analogous sample from the Sloan Digital Sky Survey (SDSS) and match the EDisCS clusters to their most likely descendants. We measure all LFs down to M M* + (2.5 - 3.5). At z<0.8, the bright end of the LF is consistent with passive evolution but there is a significant build-up of the faint end of the red sequence towards lower redshift. There is a weak dependence of the LF on cluster velocity dispersion for EDisCS but no such dependence for the SDSS clusters. We find tentative evidence that red sequence galaxies brighter than a threshold magnitude are already in place, and that this threshold evolves to fainter magnitudes toward lower redshifts. We compare the EDisCS LFs with the LF of co-eval red sequence galaxies in the field and find that the bright end of the LFs agree. However, relative to the number of bright red galaxies, the field has more faint red galaxies than clusters at 0.6<z<0.8 but fewer at 0.4<z<0.6, implying differential evolution. We compare the total light in the EDisCS cluster red sequences to the total red sequence light in our SDSS cluster sample. Clusters at 0.4<z<0.8 must increase their luminosity on the red sequence (and therefore stellar mass in red galaxies) by a factor of 1-3 by z=0. The necessary processes that add mass to the red sequence in clusters predict local clusters that are over-luminous as compared to those observed in the SDSS. The predicted cluster luminosities can be reconciled with observed local cluster luminosities by combining multiple previously known effects.Comment: Accepted for publication in the Astrophysical Journal. 36 pages, 16 figures, 10 table
    corecore