172 research outputs found

    Mapping the human cortical surface by combining quantitative T(1) with retinotopy

    Get PDF
    We combined quantitative relaxation rate (R1= 1/T1) mapping-to measure local myelination-with fMRI-based retinotopy. Gray-white and pial surfaces were reconstructed and used to sample R1 at different cortical depths. Like myelination, R1 decreased from deeper to superficial layers. R1 decreased passing from V1 and MT, to immediately surrounding areas, then to the angular gyrus. High R1 was correlated across the cortex with convex local curvature so the data was first "de-curved". By overlaying R1 and retinotopic maps, we found that many visual area borders were associated with significant R1 increases including V1, V3A, MT, V6, V6A, V8/VO1, FST, and VIP. Surprisingly, retinotopic MT occupied only the posterior portion of an oval-shaped lateral occipital R1 maximum. R1 maps were reproducible within individuals and comparable between subjects without intensity normalization, enabling multi-center studies of development, aging, and disease progression, and structure/function mapping in other modalities

    Science results from the imaging Fourier transform spectrometer SpIOMM

    Full text link
    SpIOMM is an imaging Fourier transform spectrometer designed to obtain the visible range (350 to 850 nm) spectrum of every light source in a circular field of view of 12 arcminutes in diameter. It is attached to the 1.6-m telescope of the Observatoire du Mont Megantic in southern Quebec. We present here some results of three successful observing runs in 2007, which highlight SpIOMMs capabilities to map emission line objects over a very wide field of view and a broad spectral range. In particular, we discuss data cubes from the planetary nebula M27, the supernova remnants NGC 6992 and M1, the barred spiral galaxy NGC7479, as well as Stephans quintet, an interacting group of galaxies.Comment: 10 pages, 7 figures, to appear in "Ground-based and Airborne Instrumentation for Astronomy II", SPIE conference, Marseille, 23-28 June 200

    The Number of Genomic Copies at the 16p11.2 Locus Modulates Language, Verbal Memory, and Inhibition.

    Get PDF
    Deletions and duplications of the 16p11.2 BP4-BP5 locus are prevalent copy number variations (CNVs), highly associated with autism spectrum disorder and schizophrenia. Beyond language and global cognition, neuropsychological assessments of these two CNVs have not yet been reported. This study investigates the relationship between the number of genomic copies at the 16p11.2 locus and cognitive domains assessed in 62 deletion carriers, 44 duplication carriers, and 71 intrafamilial control subjects. IQ is decreased in deletion and duplication carriers, but we demonstrate contrasting cognitive profiles in these reciprocal CNVs. Deletion carriers present with severe impairments of phonology and of inhibition skills beyond what is expected for their IQ level. In contrast, for verbal memory and phonology, the data may suggest that duplication carriers outperform intrafamilial control subjects with the same IQ level. This finding is reminiscent of special isolated skills as well as contrasting language performance observed in autism spectrum disorder. Some domains, such as visuospatial and working memory, are unaffected by the 16p11.2 locus beyond the effect of decreased IQ. Neuroimaging analyses reveal that measures of inhibition covary with neuroanatomic structures previously identified as sensitive to 16p11.2 CNVs. The simultaneous study of reciprocal CNVs suggests that the 16p11.2 genomic locus modulates specific cognitive skills according to the number of genomic copies. Further research is warranted to replicate these findings and elucidate the molecular mechanisms modulating these cognitive performances

    16p11.2 Locus modulates response to satiety before the onset of obesity

    Get PDF
    Background: The 600 kb BP4-BP5 copy number variants (CNVs) at the 16p11.2 locus have been associated with a range of neurodevelopmental conditions including autism spectrum disorders and schizophrenia. The number of genomic copies in this region is inversely correlated with body mass index (BMI): the deletion is associated with a highly penetrant form of obesity (present in 50% of carriers by the age of 7 years and in 70% of adults), and the duplication with being underweight. Mechanisms underlying this energy imbalance remain unknown. Objective: This study aims to investigate eating behavior, cognitive traits and their relationships with BMI in carriers of 16p11.2 CNVs. Methods: We assessed individuals carrying a 16p11.2 deletion or duplication and their intrafamilial controls using food-related behavior questionnaires and cognitive measures. We also compared these carriers with cohorts of individuals presenting with obesity, binge eating disorder or bulimia. Results: Response to satiety is gene dosage-dependent in pediatric CNV carriers. Altered satiety response is present in young deletion carriers before the onset of obesity. It remains altered in adolescent carriers and correlates with obesity. Adult deletion carriers exhibit eating behavior similar to that seen in a cohort of obesity without eating disorders such as bulimia or binge eating. None of the cognitive measures are associated with eating behavior or BMI. Conclusions: These findings suggest that abnormal satiety response is a strong contributor to the energy imbalance in 16p11.2 CNV carriers, and, akin to other genetic forms of obesity, altered satiety responsiveness in children precedes the increase in BMI observed later in adolescence

    16p11.2 locus modulates response to satiety before the onset of obesity

    Get PDF
    Background: The 600 kb BP4-BP5 copy number variants (CNVs) at the 16p11.2 locus have been associated with a range of neurodevelopmental conditions including autism spectrum disorders and schizophrenia. The number of genomic copies in this region is inversely correlated with body mass index (BMI): the deletion is associated with a highly penetrant form of obesity (present in 50% of carriers by the age of 7 years and in 70% of adults), and the duplication with being underweight. Mechanisms underlying this energy imbalance remain unknown. Objective: This study aims to investigate eating behavior, cognitive traits and their relationships with BMI in carriers of 16p11.2 CNVs. Methods: We assessed individuals carrying a 16p11.2 deletion or duplication and their intrafamilial controls using food-related behavior questionnaires and cognitive measures. We also compared these carriers with cohorts of individuals presenting with obesity, binge eating disorder or bulimia. Results: Response to satiety is gene dosage-dependent in pediatric CNV carriers. Altered satiety response is present in young deletion carriers before the onset of obesity. It remains altered in adolescent carriers and correlates with obesity. Adult deletion carriers exhibit eating behavior similar to that seen in a cohort of obesity without eating disorders such as bulimia or binge eating. None of the cognitive measures are associated with eating behavior or BMI. Conclusions: These findings suggest that abnormal satiety response is a strong contributor to the energy imbalance in 16p11.2 CNV carriers, and, akin to other genetic forms of obesity, altered satiety responsiveness in children precedes the increase in BMI observed later in adolescence

    Whole-brain in-vivo measurements of the Axonal G-Ratio in a group of 37 healthy volunteers

    Get PDF
    The g-ratio, quantifying the ratio between the inner and outer diameters of a fiber, is an important microstructural characteristic of fiber pathways and is functionally related to conduction velocity. We introduce a novel method for estimating the MR g-ratio non-invasively across the whole brain using high-fidelity magnetization transfer (MT) imaging and single-shell diffusion MRI. These methods enabled us to map the MR g-ratio in vivo across the brain's prominent fiber pathways in a group of 37 healthy volunteers and to estimate the inter-subject variability. Effective correction of susceptibility-related distortion artifacts was essential before combining the MT and diffusion data, in order to reduce partial volume and edge artifacts. The MR g-ratio is in good qualitative agreement with histological findings despite the different resolution and spatial coverage of MRI and histology. The MR g-ratio holds promise as an important non-invasive biomarker due to its microstructural and functional relevance in neurodegeneration
    corecore