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Switzerland 7Laboratory of Behavioral Genetics, Ecole Polytechnique Federale de Lausanne
(EPFL), Lausanne, Switzerland

⇤To whom correspondence should be addressed; E-mail: lkhenissi@gmail.com

Socioeconomic status (SES) plays a significant role in health and disease. At

the same time, early-life conditions affect neural function and structure, sug-

gesting the brain may be a conduit for the biological embedding of SES. Here,

we investigate the neural signatures of SES in a large-scale population cohort

aged 45–85 years. We assess both grey matter volume (GMV) and magne-

tization transfer (MT) saturation, indicative of myelin content. Higher SES

in childhood and adulthood associated with more GMV in several brain re-

gions, including postcentral and temporal gyri, cuneus, and cerebellum, while
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low SES correlated with larger entorhinal cortex volume. High childhood SES

was linked to more widespread GMV differences and higher myelin content in

the sensorimotor network while low SES correlated to myelin content in the

temporal lobe. Crucially, childhood SES differences in adult brains persisted

even after controlling for adult SES, highlighting the unique contribution of

early-life conditions to neural status in older age, independent of later changes

in SES. These findings inform on the biological underpinnings of social in-

equality, particularly as it pertains to early-life conditions.

Introduction

Low socio-economic status (SES) contributes to negative health outcomes ( (1)), including car-

diovascular disease ( (2)), diabetes ( (3)) and decreased life expectancy ( (4)). SES is further

linked to differences in cognitive function ( (5)). For instance, an increased risk of dementia

is observed among disadvantaged socioeconomic groups ( (6)), underscoring the putative link

between brain health and SES ( (7)). Evidence points to a cumulative effect of socio-economic

disadvantage over time on health outcomes ( (8)) highlighting the need to adopt a lifecourse

perspective when probing links between SES and physiological markers of health.

Links between SES and cognition suggest the brain is a plausible candidate for the biological

embedding of SES. In the developing brain, childhood SES is tied to anatomy ( (9)) and function

( (10)), such as reading abilities ( (11)). Specifically, hippocampal volumes correlate positively

with SES ( (12), (13) ), as does cortical thickness ( (14)). These observations suggest childhood

SES may mediate effects on language ( (15)); reading abilities ( (16)) and mental health status

( (17)). Studies in adults remain limited, but also highlight links between SES and regional

brain volumes, especially in memory regions such as the hippocampus ( (18), (19), (20), (21)),

although a recent meta-analysis highlighted the diversity of specific SES neural correlates across
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studies ( (22)).

Studies on the neural imprints of SES nevertheless remain comparatively sparse ( (23))

and at times yield varied results ( (24), (22)). Further, research to date has relied on region-

of-interest (ROI) analyses rather than a whole-brain investigation, leaving results open to bias

( (25)). This tendency to limit analysis to specific regions may reflect the nature of the fea-

ture studied: SES presents a social construct, as opposed to a nosological entity, and therefore

corollary neural differences in the population should be subtle, requiring large-scale studies to

be identified at the whole-brain level.

It further remains unclear whether SES-mediated differences in late-life reflect traces of

childhood SES, as the latter may resolve with a higher SES in adulthood or maturation, or, con-

versely, persist into old age. To date, few have queried the human brain to assess distal, neural

traces of economic conditions in childhood ( (26)). While some studies uncover an associa-

tion between childhood SES and increased hippocampal volumes in adulthood ( (27)), others

do not ( (18), (28)). Furthermore, most studies assess grey matter measures to detect exoge-

nously mediated neural differences, but it is white matter that is more susceptible to plastic

changes in adulthood ( (29)) and therefore especially pertinent to neural correlates of social ad-

versity. While some have sought SES-mediated white matter differences in children ( (30)) and

adults ( (31)), they have primarily employed diffusion-tensor imaging. Tensor-based measures

of white matter microstructure lack a straightforward neuro-biological interpretation ( (32))

and notably are not site-invariant ( (33)). Non-invasive in vivo white matter assessment re-

mains a challenging endeavor ( (34)) but magnetization-transfer (MT) saturation quantitative

MRI (qMRI) offers a reliable marker of myelin content ( (35), (36)). MT refers to the mag-

netization exchange between free protons and those bound to macromolecules such as myelin

( (37)). Imaging studies have found MT quantities correlate to ex-vivo histological assess-

ment of myelin in post-mortem brains ( (38)), and in addition, have the added benefit of being
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site-invariant ( (39)). MT’s enhanced myelin sensitivity may better serve in highlighting white

matter variation in a healthy population, where differences are expected to be small.

In this study, we probe the relationship between brain microstructural properties, specifically

grey matter volume and myelin content, and SES in a population cohort of older adults, using

quantitative MRI ( (40)). We hypothesize that childhood SES will be reflected in late-life neural

markers even when adjusting for SES in adulthood. We investigate these differences at both the

whole-brain level, to query differences that may be evoked by qMRI’s sensitivity; and also

examine a set of a priori regions, notably the hippocampus and associated memory areas. We

query this hypothesis by analyzing a large population cohort (n = 1166) of older adults (mean

age = 59.65 years) from one scanner site; employing quantitative neuroimaging using multi-

parametric maps; applying a data-driven measure of SES; and exploiting a reliable marker of

myelin. We hypothesize that differences will be observed in both grey matter and white matter,

as quantified by MT saturation mapping.

Results

Brain imaging data included whole-brain maps of MT saturation and grey matter volume (GMV).

MT saturation in grey matter (MTGM) and white matter (MTWM) was analyzed in separate

statistical models. Thus, three different sets of brain anatomy features constituted our outcome

measures in a general linear model (GLM). We designed three multiple regression tests in SPM

to examine brain differences linked to SES in the cohort for each neuroimaging data set. In the

first two, we included either adult SES (aSES) or childhood SES (cSES) as a covariate of inter-

est. For the third, we designed a full model that included both aSES and cSES. By combining the

two SES variables, we can assess the unique contribution of one or the other to neural outcome

variables. Importantly, we did not orthogonalize these two measures as no firm principle can

attribute primacy to one or the other. Finally, age, gender and total intracranial volume (TIV) - a
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proxy for head size - were included in the design as nuisance variables ( (41)). We tested for the

overall contribution of SES to differences in neural data by performing a one-sample t-test on

the SES coefficient of the model. Mass-univariate analyses were performed with a significance

threshold of p = 0.05, FWE corrected for multiple comparisons at the whole-brain voxel level

( (42)).

Results for SES

Model 1 – Brain changes associated with Adult SES

MT changes associated with Adult SES Adult SES was tied to decreases in MT density

bilaterally in the entorhinal cortex. (Figure 2)

Grey Matter volume changes associated with Adult SES Adult SES correlated positively

with grey matter volume in several regions, including bilateral superior parietal lobules, left

thalamus and right cerebellum (exterior).

Model 2 – Brain changes associated Childhood SES

MT changes associated Childhood SES Childhood SES (cSES) correlated positively with

MT in right superior parietal lobule and negatively with MT in bilateral temporal lobes. In white

matter, cSES correlated positively with MT near the pallidum/ventral tegmentum; bilateral pre-

central gyrus; and right inferior occipital gyrus (Table 2). The pattern found in MT notably

delineates the sensorimotor network ( (43)) (Figure 3).

Grey Matter volume changes associated Childhood SES Childhood SES correlated posi-

tively with grey matter volume in several regions, including bilateral cerebellum and postcentral
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gyri, right lingual gyrus, brainstem, left pre-central gyrus, right middle occipital gyrus, right su-

perior temporal gyrus, left inferior occipital gyrus and the inferior temporal gyri bilaterally.

Using small volume correction, we also find a negative correlation between childhood SES and

right hippocampus volume.

GLM 3 – Full model Results above suggest childhood SES has a stronger relationship with

late-life adult brain anatomy than does adult SES. To better inform our hypothesis, we fur-

ther analyzed both child- and adulthood SES in the same model. Because these two variables

are correlated (r = 0.536, p ¡ 0.001), we do not expect associated regression slopes to survive

thresholds corrected for multiple tests at the whole brain level. Below, we report either peaks or

clusters whose t-values fall below a threshold of p = 0.05, FWE corrected. Based on the extant

literature, we use a small volume correction for a set of memory regions including: the parahip-

pocampal gyrus, entorhinal cortex and the hippocampus. At the whole brain level, significant

results were found exclusively for positive associations between childhood SES and grey matter

in bilateral cerebellum; left cuneus; and left postcentral gyrus (Figure 4).

Small Volume Correction Analysis – Adult SES Adult SES correlated negatively with MT

bilaterally in the entorhinal cortex. Grey matter volumes correlated positively with the left

entorhinal cortex and hippocampus.

Small Volume Correction Analysis – Childhood SES Childhood SES correlated positively

with MT in white matter in left hippocampus. Childhood SES further correlated negatively with

the right hippocampus.

GLM 3 – Full model, controlling for cardio-vascular risk factors Studies on SES com-

monly take into consideration other health factors when assessing outcomes, though the latter
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tend towards easily quantifiable variables such as morbidity, as opposed to in-vivo brain mea-

sures. We nonetheless opted to perform a GLM that included a regressor for cumulative cardio-

vascular risk factors, including previous cardiac events; diagnosis of diabetes; and obesity. At

the whole brain level, significant results were found only for MT values in a small cluster (k

=13) of the right cuneus when associated with childhood SES.

Discussion

In this study, we examined the relationship between life-course socioeconomic status (SES) and

structural brain properties using MRI-derived estimates indicative of myelin content and grey

matter volume in older individuals from the general population in a whole-brain analysis. In

contrast to previous studies, we adopted a life-course perspective and hypothesized that neural

traces of childhood SES remain when controlling for adult SES. We found that both childhood

and adult SES separately correlated with grey matter volume and myelin differences. Moreover,

the effect of childhood SES on grey matter volume and myelin content was independent of adult

socioeconomic circumstances. Though we find evidence of an effect of adult SES in both grey

matter and MT when controlling for childhood SES, childhood SES was associated with more

robust neural differences when controlling for adult SES. Our results support the hypothesis

that childhood SES leaves a neural imprint even in adulthood and more generally, corroborate

the latent effect model for the impact of childhood SES on adult outcomes ( (44)).

Our findings were uncovered in the largest study to date investigating SES associations with

the brain. Studies on neural imprints of SES have yielded variable results, as highlighted in a

recent meta-analysis ( (22)), which may be due in part to limited sample sizes. Two key studies

have attempted to overcome this problem ( (13), (23)), finding, in the first, a positive correlation

between parental education and hippocampal volume, without adjusting for family income, and

an association between cortical surface area and both parental income and education. In the

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.20121913doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20121913
http://creativecommons.org/licenses/by-nc-nd/4.0/


second study, widespread cortical surface area and hippocampus similarly correlate with higher

SES, as assessed by the Hollingshead score. While these two studies yield concordant results,

they are both found in pediatric cohorts and further target the hippocampus for volumetric anal-

ysis. Our whole brain approach finds hippocampal GM associates with lower childhood SES,

but higher adult SES in an ROI analysis, appearing to contradict the relationship between the

hippocampus and SES. However, qMRI may highlight specificity in this same relationship, as

hippocampal volume may cede to increases in myelination ( (36)). Further, myelin may be a

more pertinent metric for function across the lifespan ( (45), (46)).

Scanner site variability( (47)) may also contribute to differences in neuroimaging studies.

An innovative feature of our study is the use of MT saturation maps to extract estimates of grey

matter volumes ( (48)) and myelin content (35)). Crucially, quantitative MRI maps are impervi-

ous to inter-site variability ( (49)). Our results therefore offer an added reliability over findings

obtained with traditional MRI methods, particularly with regards to myelin quantification meth-

ods.

SES differences in brain’s myelin Most studies on in vivo structural brain properties linked

to SES focus on grey matter volume or cortical thickness measures. However, myelin plays

a crucial role in brain function and dysfunction ( (29)) and therefore should not be neglected.

Here, we index myelin with the use of qMRI ( (50), (51)). As shown in our study, MT values

covaried with SES in regions distinct from grey matter volume changes, highlighting myelin’s

independent status in the brain. Our results support a recent study showing a relationship be-

tween neighborhood deprivation, and rate of myelination, as assessed by MT, across childhood

and adolescence ( (45)). Further, we find a positive association of myelin in regions comprising

the sensorimotor network with SES. This network has previously been associated to cognitive

impairment ( (52)) and MT in old age correlated with motor performance ( (53)). Aging in-
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duces cognitive decline ( (54)), even in early adulthood ( (55)) as well as decreases in motor

performance ( (56)). Converging evidence highlights the increasing association between cogni-

tive and sensorimotor functions with aging ( (57)). One possibility is that childhood SES may

provide a buffer to functional decline in old age via increased myelination of the sensorimotor

network.

Regional Specificity of SES Neural Differences Brain regions that we found to covary with

SES play important function roles in cognition, memory and motor function. The pallidum

plays a role in reward and motivation ( (58), as well as motor function ( (59)). The hippocam-

pus plays a significant role in memory ( (60)). The entorhinal cortex is notably involved in spa-

tial ( (61)) and temporal ( (62)) memory and acts as a gateway between the hippocampus and

cortical areas ( (63)). The hippocampus in particular has previously been found implicated in

psychosocial adversity ( (64)) and yet is also known as a region susceptible to plasticity ( (65)).

Finally, the temporal pole has been hypothesized to serve in integrating different streams of

perceptual information and also mediates social interaction ( (66)) and higher order knowledge

representation ( (67)). Differences in any of these structures may therefore have considerable

functional implications.

SES differences and the hippocampus Differences in hippocampal grey matter volume as-

sociated with SES have previously been reported in a number of studies ( (21), (27)). Our

results support partially support this relationship, but we detect an inverse relationship between

right hippocampal volume and childhood SES. We also find a positive, linear relationship be-

tween left hippocampal volume and adult SES, specifically. Childhood SES in our cohort was

nonetheless also associated with higher right temporal pole volumes, the latter which forms part

of the temporal lobe system, and is uniquely sensitive to age-related decline ( (68)). Childhood

SES further correlates positively with greater MT in left hippocampus, raising the possibility of
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interplay between myelin and grey matter. For instance, cortical grey matter reduction occurs

in healthy adolescence along with an increase of myelination ( (69)). In the same model, adult

SES correlated with increased left entorhinal, parahippocampal and hippocampal volumes; and

decreased MT in bilateral entorhinal cortex, here directly showing opposing effects of SES on

grey matter and myelin in left entorhinal cortex. Our results thus suggest a more complex in-

teraction in temporal lobe regions in relation to SES, with differential effects of myelin, grey

matter and early or late-life SES implicated in disparate neural profiles.

Limitations of the Study In our study, childhood SES was assessed using adult recall that

is susceptible to faulty memories ( (70)). Household income in childhood and adulthood are

further indexed by different measures and it can be argued that the one for childhood skews

towards assessing disadvantage – although this bias may be redressed as retrospective assess-

ments tend to favor a more optimistic view of how things were ( (71)). We also define SES with

a composite measure, which does not identify unique risk factors ( (72)). Finally, our study

design precludes the possibility to control for context beyond SES in early life that can impact

neural structure. In spite of these limitations, our results are based on a precious dataset, as not

all large-scale neuroimaging data have childhood, or conversely, adult data.

Conclusions Our study informs the sparse extant literature on brain correlates of SES. Known

associations between childhood adversity and late-life outcomes strongly suggest a causal pro-

cess embedded in the arrow of time. By highlighting a neurophysiological embedding of child-

hood SES in old age, our results add credence to this association.
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Methods

Cohort The study cohort (BrainLaus) was recruited from the CoLaus—PsyCoLaus general

population cohort of the city of Lausanne, Switzerland ( (73); (74)). The BrainLaus study aims

to scan participants at two time points, spaced 5 years apart. These two time points represent

the 3rd and 4th study time points of the greater CoLaus study. Analyses were performed on

imaging data acquired between 2014 and 2018 and represented the first BrainLaus time point.

A total of 1332 participants were scanned at the Siemens Prisma 3T scanner of the Department

for clinical neuroscience, Lausanne University Hospital. (Figure 1a).

Cohort Description The CoLaus—PsyCoLaus study was designed to recruit a representa-

tive sample of the population ( (73)). We sought to determine if the BrainLaus subset differed

from the larger cohort on a number of key dimensions by examining differences between Co-

Laus—PsyCoLaus participants that were not included in the BrainLaus cohort (n = 5401); and

the BrainLaus cohort on all measures available for somatic variables (n = 1309). (A full list

of variables can be found in Appendix (A)). There was no significant difference in gender, ed-

ucation level, or last known occupation distributions between the two cohorts. A significant

difference in age was found between the two cohorts however, with an average age of 63 for

CoLaus—PsyCoLaus participants and 59 for BrainLaus participants (Cohen’s d =0.4). This re-

sult underlines the necessity of including age as a nuisance variable in subsequent neuroimaging

analyses. (Figure 1b).

Neuroimaging Data and Analysis The scanning protocol included a multi-parameter map-

ping (MPM) relaxometry protocol ( (75)) and diffusion-weighted acquisition that was not used

in the current study. Approximate total scan duration lasted 45 minutes. Analyses were

performed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) using Matlab, 2017.
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Socio-economic data were missing for 18 of the n = 1194 participants whose neuroimaging

data were retained. A total of n = 1166 participants (mean age: 59.65 years; 622 females, 544

males) were included in our analyses.

Quantitative MT maps were computed from raw MR images acquired using a multi-echo

3D FLASH (fast low angle shot) at a 1 mm, isotropic resolution ( (51)). The MRI data

was acquired with T1-, PD- and MT-weighted contrast (respective Repetition Time/Flip An-

gle (FA) of 23.7ms/21�C, 23.7ms/6�C and 23.7ms/6�C(MT). For the MT-weighted contrast, an

off-resonance Gaussian MT saturation RF pulse (4ms, FA = 220�C, 2KHz frequency offset) was

applied before non-selective excitation. Multiple echo images were acquired with echo times

ranging from 2.2 ms to 19.7 ms (except for the MT-weighted scans where the maximum echo

time was 17.2ms, due to the application of the MT saturation pulse). We employed GRAPPA

parallel imaging (acceleration factor of 2) in anterior-posterior phase encoding direction and

6/8 partial Fourier acquisitions in the partition direction (left-right). The Multi-parameter Map-

ping protocol also included the acquisition of MRI data for the mapping of the radio-frequency

excitation field B1, instrumental to obtain accurate MRI biomarkers of tissue myelin density

( (39)). This data was acquired using the technique described in ( (76)). Acquisition settings

were identical to those described in ( (75)).

Image Pre-processing Acquired data underwent automated pre-processing in the multi-channel

“unified segmentation” Bayesian framework of SPM12 yielding GM and WM probability maps

derived from MT and PD* maps. A study specific DARTEL template was created from all

individual GM and WM tissue classes ( (77)) to then apply the derived spatial registration pa-

rameters onto grey matter volumes and MT saturation maps and warp these to standard MNI

space. Here, we followed the default settings for implementation of an established “weighted-

averaging” procedure ( (50)).
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Image quality assessment Given the size and average age of the cohort, as well as the plu-

rality of MRI data acquired, a multi-step image quality procedure was applied to our cohort. In

a first instance, we computed regional averages for MT, R2* and grey matter volumes for each

participant by applying individual inverse deformation fields to anatomical volumes provided

by the Neuromorphometrics Atlas (Neuromorphometrics, Inc.), yielding 129 values for each

participant, for each dataset. Individual average values falling outside a range of +/- 4 standard

deviations from the group mean of a specific brain region were flagged and subsequently ex-

cluded from analysis (n=55). In a second instance, we examined differences between individual

GM, WM, and CSF segmentations and corresponding canonical tissue probability maps. We

first binarized individual tissue segmentations before conducting this procedure. Resulting im-

ages were then vectorized, assigned a value of 1 for all voxels > 0 and summed. Participants

for whom this total exceeded the group average by 3 standard deviations were subsequently ex-

cluded from analysis (n= 31). Finally, we performed a visual inspection of datasets that showed

high standard deviations of the R2* parameter in white matter. This index has been shown to

exhibit a high correlation with motion history during data acquisition ( (78)). The criterion for

a high standard deviation was set to a conservative cut-off, which flagged approximately 500

potentially problematic datasets. As our cohort tended towards an older population, we expect

more movement than average. Therefore, we visually examined these 500 datasets to identify

gross movement, physiological anomalies or other artefacts. This visual rating excluded another

n = 25 subjects from subsequent analysis. Finally, 4 more participants were found to have been

scanned with a different coil and were also excluded from the data analysis pool. These image

quality procedures excluded a total of 125 subjects from analysis. (Appendix C)

SES variables The CoLaus—PsyCoLaus study collected a wide range of socio-demographic

variables. Socio-economic status can be indexed in several ways; however, consensus holds
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that three observable variables can serve as valid measures of the underlying construct, namely,

education, income and occupation levels ( (79)). CoLaus—PsyCoLaus demographic data in-

cluded information on mean income (in 6 intervals); education (3 levels); and self and partner’s

last known occupation. The latter were ranked according to the European Socio-Economic

Classification (ESEC) scale (https://www.iser.essex.ac.uk/archives/esec/

user-guide) (9 levels) and assigned a corresponding numerical value; own income was

taken to be highest household income between spouses, where applicable. Measures of child-

hood SES included father’s occupation (ranked according to the ESEC scale); highest parental

education (3 levels); and a measure of childhood household financial status as proxy of child-

hood income (Appendix B). This last measure included a sum of 9 positive and negative answers

for family lifestyle and conditions, such as ownership of a car and having insufficient heating.

The following variables were scaled into tertiles and assigned values ranging from 0 to 2: Adult

occupation, taken as highest household occupation; mean income; paternal occupation; and

childhood finances. To obtain a precise measure of adult and childhood SES constructs, we

performed two PCAs for the trio of adult and childhood SES variables. We found that, in adult-

hood, education explained most of the variance (63.7%), followed by income (21.84%) and

occupation (14.5%). In childhood, household income explained most of the variance (70.39%),

followed by education (16%) and occupation (13.6%). We then created a composite measure

of adult SES and one of childhood SES by weighting tertile measures of income, education and

occupation with their respective variance contributions before summing them. This procedure

allowed for the range of possible SES variables to increase from 3 to 48, with a concomitant in-

crease in information, as formalized by entropy, from 1.58 to 4.68 and 1.55 to 3.67 bits, for adult

and childhood SES, respectively. This procedure therefore produces a single, precise measure

of SES to include as an independent variable in our analyses.
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Table 1: Whole brain voxel level analysis of MT load and grey matter volumes in relation to
adult SES (aSES).

MT aSES Negative correlation
Region cluster Coordinates cluster peak peak

k x y z mm p(FWE-corr) p(FWE-corr) Z
r Entorhinal Area 424 20 0 -45 0.305 0.012 4.82
GM aSES Positive correlation
L Precuneus/Superior Parietal/L PostCentral 914 -6 -54 72 0.046 0.003 5.12
L Thalamus 5470 -12 -21 -6 0 0.014 4.8

-18 -24 -18 0.026 4.66
0 -27 -12 0.072 4.41

r Superior Parietal 819 9 -53 74 0.064 0.042 4.54
r Cerebellum Exterior 1201 35 -77 -54 0.018 0.062 4.45

Results shown above are either significant at the voxel or cluster level using a threshold of p = 0.05,
FWE corrected for multiple comparison. GM: Grey Matter; MT: Magnetization Transfer.

Tables
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Figure 1. Graphical representation of the study cohort. 
The BrainLaus study comprises a subset of the PsyCoLaus 
cohort, which is itself a subset of the population cohort 
(Cohorte Lausanne, CoLaus).

Figure 1: Cohort Characteristics. A) The BrainLaus study comprises a subset of the PsyCoLaus
cohort, which is itself a subset of the population cohort (Cohorte Lausanne, CoLaus). B) The
CoLaus Cohort includes a representative sample of the population, which is reflected in the
BrainLaus subset, but for age. Here, age distributions for participants in the BrainLaus study
are shown alongside age distributions for participants that did not undergo MR scanning.
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Table 2: Whole brain voxel level analysis of MT load and grey matter volumes in relation to
childhood SES (cSES).

MT GM CSES Positive correlation
Region cluster Coordinates cluster peak peak

k x y z mm p(FWE-corr) p(FWE-corr) Z
R Superior Parietal 738 21 -45 68 0.105 0.016 4.74
MT GM CSES Negative correlation
R Temporal 320 21 8 -45 0.435 0.052 4.46
L Temporal 126 -26 11 -48 0.794 0.092 4.32

1 -17 -2 -41 0.993 0.992 3.11
MT WM CSES Positive correlation
R Pallidum 261 3 2 -2 0.362 0.022 4.17

20 2 -5 0.18 3.55
L Pallidum 432 -15 0 -6 0.305 0.028 4.11

-3 0 -3 0.038 4.03
L Precentral Gyrus 1233 -15 -17 74 0.158 0.042 4

-32 -24 59 0.113 3.7
-11 -35 75 0.217 3.48

GM CSES Positive correlation
R Cerebellum 4196 18 -62 -62 0 0 6.14

35 -74 -53 0 5.68
L Postcentral Gyrus 1936 -9 -35 78 0.002 0 5.73

-5 -51 72 0.002 5.23
-23 -30 75 0.003 5.13

R Postcentral Gyrus 1350 9 -41 78 0.011 0 5.7
21 -44 72 0.018 4.74
14 -48 77 0.021 4.71

L Cerebellum 3615 -35 -77 -53 0 0 5.54
-21 -59 -62 0 5.53

R lingual gyrus 8268 3 -60 5 0 0 5.53
-6 -92 12 0.006 5
-9 -65 3 0.013 4.83

L Precentral gyrus 337 -59 9 15 0.385 0.006 5
Brainstem 4788 6 -29 -8 0 0.008 4.94

-6 -32 -11 0.035 4.59
24 -29 11 0.065 4.43

Brainstem 1552 35 -84 11 0.006 0.021 4.71
44 -83 8 0.108 4.3
36 -95 5 0.178 4.16

R middle occipital gyrus 119 -23 -6 -50 0.811 0.024 4.68
R Superior Temporal gyrus 1755 53 -6 -11 0.003 0.025 4.67
R Inferior temporal/fusiform gyrus 608 27 -6 -48 0.138 0.044 4.53
L inferior occipital 789 -48 -78 -8 0.071 0.06 4.46
R Inferior temporal 925 53 -54 -15 0.045 0.179 4.16
GM CSES Negative correlation
R hippocampus 266 38 -32 -8 0.501 0.331 3.9617
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A) Adult SES correlates in MT weighted images

B) Adult SES correlates in grey matter volume

Figure 2: Results of GLM 1 (adult SES). A) Results of a negatively signed one-sample t-test
of adult SES on MT in grey matter. B) Results of a positively signed one-sample t-test of adult
SES on grey matter volume. Colorbars indicate t-values. All maps shown are thresholded at p
=0.05, FWE corrected.
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Figure 3: Results of GLM 2 (Childhood SES) in MT maps and grey matter volumes. A) Results
of both positive and negatively signed one-sample t-tests of childhood SES on MT in grey
matter. B) Results of a positively signed one-sample t-test on childhood SES on MT in white
matter. C) Results of both positive and negatively signed one-sample t-tests on childhood SES
on in grey matter. Colorbars indicate t-values (hot for positive and cold for negative t-tests). All
maps shown are thresholded at p =0.05, FWE corrected.
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A) Adult SES correlates in MT weighted images, adjusted for childhood SES

B) Adult SES correlates in grey matter volume, adjusted for childhood SES

C) Childhood SES correlated in grey matter MT, adjusted for adult SES 

D) Childhood SES correlated in white matter MT, adjusted for adult SES  

E) Childhood SES correlated with grey matter volumes, adjusted for adult SES 

Figure 4: Results of GLM 3 including adult and childhood SES as covariates in MT maps and
grey matter volumes. A) Results of a negatively signed one-sample t-test of adult SES in MT
in temporal pole; B) Results of a positively signed one-sample t-test on adult SES in entorhinal
grey matter volumes; C) and D) results of positive childhood SES correlates in globus pallidus
MT (grey and white matter) E) Results of both positive and negative signed one-sample t-tests
on childhood SES in grey matter. Colorbars indicate t-values. All maps shown are thresholded
at p =0.001, uncorrected for visualization purposes.
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Table 3: Whole brain voxel level analysis of grey matter volumes in relation to SES in a full
model including both childhood and adult SES.

GM cSES Positive t-test
Region cluster Coordinates cluster peak peak

k x y z mm p(FWE-corr) p(FWE-corr) Z
R cerebellum 3071 20 -60 -62 0 0.001 5.38

33 -74 -51 0.26 4.04
L cuneus 7172 -5 -93 14 0 0.001 5.34

3 -60 5 0.016 4.77
-12 -65 2 0.02 4.72

L postcentral gyrus 782 -8 -36 78 0.073 0.007 4.96
-32 -33 59 0.86 3.48

L cerebellum 2888 -23 -63 -56 0 0.018 4.74
-33 -75 -53 0.067 4.43

L inferior occipital gyrus 414 -48 -77 -9 0.287 0.081 4.38
R postcentral gyrus 434 9 -41 78 0.266 0.166 4.18
R middle temporal gyrus 511 57 -5 -17 0.198 0.516 3.79

Results shown above are either significant at the peak or cluster level using a threshold of p = 0.05, FWE
corrected for multiple comparisons. Significant clusters were only found for childhood SES.
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