46 research outputs found

    Molecular and behavioural evidence for gene flow between host races of the larch budmoth Zeiraphera diniana

    Get PDF
    Larch and pine associated populations of Zeiraphera diniana (Lepidoptera: Tortricidae) differ in a number of heritable traits, but pheromone-mediated cross-attraction occurs between them in the wild. Using a quartet mate choice design (one male and one female of each type per cage) we estimate that, following cross-attraction by pheromones, the subsequent probability of hybridization is approximately 28%. We also examined molecular data, and were unable to distinguish between the races on the basis of 695bp of mitochondrial COI, tRNA-leucine, and COII gene sequence. Both results support earlier field studies suggesting that larch- and pine-feeding populations are host races that hybridize at an appreciable level in the wild. The shared mitochondrial haplotypes we observed are also consistent with ongoing and successful gene flow between the two host races

    The chemical signatures underlying host plant discrimination by aphids

    Get PDF
    The diversity of phytophagous insects is largely attributable to speciation involving shifts between host plants. These shifts are mediated by the close interaction between insects and plant metabolites. However, there has been limited progress in understanding the chemical signatures that underlie host preferences. We use the pea aphid (Acyrthosiphon pisum) to address this problem. Host-associated races of pea aphid discriminate between plant species in race-specific ways. We combined metabolomic profiling of multiple plant species with behavioural tests on two A. pisum races, to identify metabolites that explain variation in either acceptance or discrimination. Candidate compounds were identified using tandem mass spectrometry. Our results reveal a small number of compounds that explain a large proportion of variation in the differential acceptability of plants to A. pisum races. Two of these were identified as L-phenylalanine and L-tyrosine but it may be that metabolically-related compounds directly influence insect behaviour. The compounds implicated in differential acceptability were not related to the set correlated with general acceptability of plants to aphids, regardless of host race. Small changes in response to common metabolites may underlie host shifts. This study opens new opportunities for understanding the mechanistic basis of host discrimination and host shifts in insects

    Genetic Structure in the Seabuckthorn Carpenter Moth (Holcocerus hippophaecolus) in China: The Role of Outbreak Events, Geographical and Host Factors

    Get PDF
    Understanding factors responsible for structuring genetic diversity is of fundamental importance in evolutionary biology. The seabuckthorn carpenter moth (Holcocerus hippophaecolus Hua) is a native species throughout the north of China and is considered the main threat to seabuckthorn, Hippophae rhamnoides L. We assessed the influence of outbreaks, environmental factors and host species in shaping the genetic variation and structure of H. hippophaecolus by using Amplified Fragment Length Polymorphism (AFLP) markers. We rejected the hypothesis that outbreak-associated genetic divergence exist, as evidenced by genetic clusters containing a combination of populations from historical outbreak areas, as well as non-outbreak areas. Although a small number of markers (4 of 933 loci) were identified as candidates under selection in response to population densities. H. hippophaecolus also did not follow an isolation-by-distance pattern. We rejected the hypothesis that outbreak and drought events were driving the genetic structure of H. hippophaecolus. Rather, the genetic structure appears to be influenced by various confounding bio-geographical factors. There were detectable genetic differences between H. hippophaecolus occupying different host trees from within the same geographic location. Host-associated genetic divergence should be confirmed by further investigation

    Ecological Niche Dimensionality and the Evolutionary Diversification of Stick Insects

    Get PDF
    The degree of phenotypic divergence and reproductive isolation between taxon pairs can vary quantitatively, and often increases as evolutionary divergence proceeds through various stages, from polymorphism to population differentiation, ecotype and race formation, speciation, and post-speciational divergence. Although divergent natural selection promotes divergence, it does not always result in strong differentiation. For example, divergent selection can fail to complete speciation, and distinct species pairs sometimes collapse (‘speciation in reverse’). Widely-discussed explanations for this variability concern genetic architecture, and the geographic arrangement of populations. A less-explored possibility is that the degree of phenotypic and reproductive divergence between taxon pairs is positively related to the number of ecological niche dimensions (i.e., traits) subject to divergent selection. Some data supporting this idea stem from laboratory experimental evolution studies using Drosophila, but tests from nature are lacking. Here we report results from manipulative field experiments in natural populations of herbivorous Timema stick insects that are consistent with this ‘niche dimensionality’ hypothesis. In such insects, divergent selection between host plants might occur for cryptic colouration (camouflage to evade visual predation), physiology (to detoxify plant chemicals), or both of these niche dimensions. We show that divergent selection on the single niche dimension of cryptic colouration can result in ecotype formation and intermediate levels of phenotypic and reproductive divergence between populations feeding on different hosts. However, greater divergence between a species pair involved divergent selection on both niche dimensions. Although further replication of the trends reported here is required, the results suggest that dimensionality of selection may complement genetic and geographic explanations for the degree of diversification in nature

    Dynamics of copy number variation in host races of the pea aphid.

    Get PDF
    Copy number variation (CNV) makes a major contribution to overall genetic variation and is suspected to play an important role in adaptation. However, aside from a few model species, the extent of CNV in natural populations has seldom been investigated. Here, we report on CNV in the pea aphid Acyrthosiphon pisum, a powerful system for studying the genetic architecture of host-plant adaptation and speciation thanks to multiple host races forming a continuum of genetic divergence. Recent studies have highlighted the potential importance of chemosensory genes, including the gustatory and olfactory receptor gene families (Gr and Or, respectively), in the process of host race formation. We used targeted resequencing to achieve a very high depth of coverage, and thereby revealed the extent of CNV of 434 genes, including 150 chemosensory genes, in 104 individuals distributed across eight host races of the pea aphid. We found that CNV was widespread in our global sample, with a significantly higher occurrence in multigene families, especially in Ors. We also observed a decrease in the gene probability of being completely duplicated or deleted (CDD) with increase in coding sequence length. Genes with CDD variants were usually more polymorphic for copy number, especially in the P450 gene family where toxin resistance may be related to gene dosage. We found that Gr were overrepresented among genes discriminating host races, as were CDD genes and pseudogenes. Our observations shed new light on CNV dynamics and are consistent with CNV playing a role in both local adaptation and speciation

    Genetic isolation between two sympatric host plant races of the European corn borer, Ostrinia nubilalis Hubner. II: assortative mating and host-plant preferences for oviposition

    No full text
    International audienceThe European corn borer, Ostrinia nubilalis Hubner, colonized maize ( Zea mays L.) after its introduction into Europe about 500 years ago and is now considered one of the main pests of this crop. In northern France, two sympatric host races have been described: one feeding on maize and the other on mugwort ( Artemisia vulgaris L.) and hop ( Humulus lupulus L.). In a previous study, we showed that mating between the two races may be impeded by differences in the timing of moth emergence and in the composition of the sex pheromone produced by the females. In this study, we further investigated the genetic isolation of these two races using strains from the maize (Z strain) and mugwort ( E strain) races selected for diagnostic alleles at two allozyme loci. In a cage containing maize and mugwort plants and located in natural conditions, mating between individuals of the same strain occurred more often than mating between males and females of the E and Z strains. In particular, we obtained no evidence for crosses between Z females and E males. We also found that females of the Z strain laid their eggs almost exclusively on maize, whereas females of the E strain laid their eggs preferentially, but not exclusively, on mugwort. These results suggest that the genetic differentiation between the two host races may also be favored by host-plant preference, one of the first steps toward sympatric speciation
    corecore