404 research outputs found

    Diagnostic applications of next generation sequencing: working towards quality standards

    Get PDF
    Over the past 6 years, next generation sequencing (NGS) has been established as a valuable high-throughput method for research in molecular genetics and has successfully been employed in the identification of rare and common genetic variations. All major NGS technology companies providing commercially available instruments (Roche 454, Illumina, Life Technologies) have recently marketed bench top sequencing instruments with lower throughput and shorter run times, thereby broadening the applications of NGS and opening the technology to the potential use for clinical diagnostics. Although the high expectations regarding the discovery of new diagnostic targets and an overall reduction of cost have been achieved, technological challenges in instrument handling, robustness of the chemistry and data analysis need to be overcome. To facilitate the implementation of NGS as a routine method in molecular diagnostics, consistent quality standards need to be developed. Here the authors give an overview of the current standards in protocols and workflows and discuss possible approaches to define quality criteria for NGS in molecular genetic diagnostics

    The use of chloroplast genome sequences to solve phylogenetic incongruences in Polystachya Hook (Orchidaceae Juss)

    Get PDF
    Background: Current evidence suggests that for more robust estimates of species tree and divergence times, several unlinked genes are required. However, most phylogenetic trees for non-model organisms are based on single sequences or just a few regions, using traditional sequencing methods. Techniques for massive parallel sequencing or next generation sequencing (NGS) are an alternative to traditional methods that allow access to hundreds of DNA regions. Here we use this approach to resolve the phylogenetic incongruence found in Polystachya Hook. (Orchidaceae), a genus that stands out due to several interesting aspects, including cytological (polyploid and diploid species), evolutionary (reticulate evolution) and biogeographical (species widely distributed in the tropics and high endemism in Brazil). The genus has a notoriously complicated taxonomy, with several sections that are widely used but probably not monophyletic. Methods: We generated the complete plastid genome of 40 individuals from one clade within the genus. The method consisted in construction of genomic libraries, hybridization to RNA probes designed from available sequences of a related species, and subsequent sequencing of the product. We also tested how well a smaller sample of the plastid genome would perform in phylogenetic inference in two ways: by duplicating a fast region and analyzing multiple copies of this dataset, and by sampling without replacement from all non-coding regions in our alignment. We further examined the phylogenetic implications of non-coding sequences that appear to have undergone hairpin inversions (reverse complemented sequences associated with small loops). Results: We retrieved 131,214 bp, including coding and non-coding regions of the plastid genome. The phylogeny was able to fully resolve the relationships among all species in the targeted clade with high support values. The first divergent species are represented by African accessions and the most recent ones are among Neotropical species. Discussion: Our results indicate that using the entire plastid genome is a better option than screening highly variable markers, especially when the expected tree is likely to contain many short branches. The phylogeny inferred is consistent with the proposed origin of the genus, showing a probable origin in Africa, with later dispersal into the Neotropics, as evidenced by a clade containing all Neotropical individuals. The multiple positions of Polystachya concreta (Jacq.) Garay & Sweet in the phylogeny are explained by allotetraploidy. Polystachya estrellensis Rchb.f. can be considered a genetically distinct species from P. concreta and P. foliosa (Lindl.) Rchb.f., but the delimitation of P. concreta remains uncertain. Our study shows that NGS provides a powerful tool for inferring relationships at low taxonomic levels, even in taxonomically challenging groups with short branches and intricate morphology.Swedish Research Council [B0569601]; European Research Council under the European Union's Seventh Framework Programme (ERC) [331024]; Swedish Foundation for Strategic Research; Knut and Alice Wallenberg Foundation; Biodiversity and Ecosystems in a Changing Climate programme; Wenner-Gren Foundations; David Rockefeller Center for Latin American Studies at Harvard University; Faculty of Science at the University of Gothenbur

    Smash and DASH with Cas9

    Get PDF

    MultiMAP: dimensionality reduction and integration of multimodal data.

    Get PDF
    Multimodal data is rapidly growing in many fields of science and engineering, including single-cell biology. We introduce MultiMAP, a novel algorithm for dimensionality reduction and integration. MultiMAP can integrate any number of datasets, leverages features not present in all datasets, is not restricted to a linear mapping, allows the user to specify the influence of each dataset, and is extremely scalable to large datasets. We apply MultiMAP to single-cell transcriptomics, chromatin accessibility, methylation, and spatial data and show that it outperforms current approaches. On a new thymus dataset, we use MultiMAP to integrate cells along a temporal trajectory. This enables quantitative comparison of transcription factor expression and binding site accessibility over the course of T cell differentiation, revealing patterns of expression versus binding site opening kinetics

    Plasmodium knowlesi Genome Sequences from Clinical Isolates Reveal Extensive Genomic Dimorphism.

    Get PDF
    Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology

    Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform

    Get PDF
    Due to the increasing throughput of current DNA sequencing instruments, sample multiplexing is necessary for making economical use of available sequencing capacities. A widely used multiplexing strategy for the Illumina Genome Analyzer utilizes sample-specific indexes, which are embedded in one of the library adapters. However, this and similar multiplex approaches come with a risk of sample misidentification. By introducing indexes into both library adapters (double indexing), we have developed a method that reveals the rate of sample misidentification within current multiplex sequencing experiments. With ~0.3% these rates are orders of magnitude higher than expected and may severely confound applications in cancer genomics and other fields requiring accurate detection of rare variants. We identified the occurrence of mixed clusters on the flow as the predominant source of error. The accuracy of sample identification is further impaired if indexed oligonucleotides are cross-contaminated or if indexed libraries are amplified in bulk. Double-indexing eliminates these problems and increases both the scope and accuracy of multiplex sequencing on the Illumina platform

    Multiplex Target Enrichment Using DNA Indexing for Ultra-High Throughput SNP Detection

    Get PDF
    Screening large numbers of target regions in multiple DNA samples for sequence variation is an important application of next-generation sequencing but an efficient method to enrich the samples in parallel has yet to be reported. We describe an advanced method that combines DNA samples using indexes or barcodes prior to target enrichment to facilitate this type of experiment. Sequencing libraries for multiple individual DNA samples, each incorporating a unique 6-bp index, are combined in equal quantities, enriched using a single in-solution target enrichment assay and sequenced in a single reaction. Sequence reads are parsed based on the index, allowing sequence analysis of individual samples. We show that the use of indexed samples does not impact on the efficiency of the enrichment reaction. For three- and nine-indexed HapMap DNA samples, the method was found to be highly accurate for SNP identification. Even with sequence coverage as low as 8x, 99% of sequence SNP calls were concordant with known genotypes. Within a single experiment, this method can sequence the exonic regions of hundreds of genes in tens of samples for sequence and structural variation using as little as 1 μg of input DNA per sample

    Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products

    Get PDF
    BACKGROUND: To utilize the power of high-throughput sequencers, target enrichment methods have been developed. The majority of these require reagents and equipment that are only available from commercial vendors and are not suitable for the targets that are a few kilobases in length. METHODOLOGY/PRINCIPAL FINDINGS: We describe a novel and economical method in which custom made long-range PCR products are used to capture complete human mitochondrial genomes from complex DNA mixtures. We use the method to capture 46 complete mitochondrial genomes in parallel and we sequence them on a single lane of an Illumina GA(II) instrument. CONCLUSIONS/SIGNIFICANCE: This method is economical and simple and particularly suitable for targets that can be amplified by PCR and do not contain highly repetitive sequences such as mtDNA. It has applications in population genetics and forensics, as well as studies of ancient DNA
    corecore