28 research outputs found

    Mycobacterial PIMs Inhibit Host Inflammatory Responses through CD14-Dependent and CD14-Independent Mechanisms

    Get PDF
    Mycobacteria develop strategies to evade the host immune system. Among them, mycobacterial LAM or PIMs inhibit the expression of pro-inflammatory cytokines by activated macrophages. Here, using synthetic PIM analogues, we analyzed the mode of action of PIM anti-inflammatory effects. Synthetic PIM1 isomer and PIM2 mimetic potently inhibit TNF and IL-12 p40 expression induced by TLR2 or TLR4 pathways, but not by TLR9, in murine macrophages. We show inhibition of LPS binding to TLR4/MD2/CD14 expressing HEK cells by PIM1 and PIM2 analogues. More specifically, the binding of LPS to CD14 was inhibited by PIM1 and PIM2 analogues. CD14 was dispensable for PIM1 and PIM2 analogues functional inhibition of TLR2 agonists induced TNF, as shown in CD14-deficient macrophages. The use of rough-LPS, that stimulates TLR4 pathway independently of CD14, allowed to discriminate between CD14-dependent and CD14-independent anti-inflammatory effects of PIMs on LPS-induced macrophage responses. PIM1 and PIM2 analogues inhibited LPS-induced TNF release by a CD14-dependent pathway, while IL-12 p40 inhibition was CD14-independent, suggesting that PIMs have multifold inhibitory effects on the TLR4 signalling pathway

    The state of research into children with cancer across Europe : new policies for a new decade

    Get PDF
    Overcoming childhood cancers is critically dependent on the state of research. Understanding how, with whom and what the research community is doing with childhood cancers is essential for ensuring the evidence-based policies at national and European level to support children, their families and researchers. As part of the European Union funded EUROCANCERCOMS project to study and integrate cancer communications across Europe, we have carried out new research into the state of research in childhood cancers. We are very grateful for all the support we have received from colleagues in the European paediatric oncology community, and in particular from Edel Fitzgerald and Samira Essiaf from the SIOP Europe office. This report and the evidence-based policies that arise from it come at a important junction for Europe and its Member States. They provide a timely reminder that research into childhood cancers is critical and needs sustainable long-term support.peer-reviewe

    Retinoblastoma

    Get PDF
    Retinoblastoma is a rare eye tumor of childhood that arises in the retina. It is the most common intraocular malignancy of infancy and childhood; with an incidence of 1/15,000–20,000 live births. The two most frequent symptoms revealing retinoblastoma are leukocoria and strabismus. Iris rubeosis, hypopyon, hyphema, buphthalmia, orbital cellulites and exophthalmia may also be observed. Sixty per cent of retinoblastomas are unilateral and most of these forms are not hereditary (median age at diagnosis two years). Retinoblastoma is bilateral in 40% of cases (median age at diagnosis one year). All bilateral and multifocal unilateral forms are hereditary. Hereditary retinoblastoma constitutes a cancer predisposition syndrome: a subject constitutionally carrying an RB1 gene mutation has a greater than 90% risk of developing retinoblastoma but is also at increased risk of developing other types of cancers. Diagnosis is made by fundoscopy. Ultrasound, magnetic resonance imaging (MRI) and computed tomography (CT) scans may contribute to diagnosis. Management of patients with retinoblastoma must take into account the various aspects of the disease: the visual risk, the possibly hereditary nature of the disease, the life-threatening risk. Enucleation is still often necessary in unilateral disease; the decision for adjuvant treatment is taken according to the histological risk factors. Conservative treatment for at least one eye is possible in most of the bilateral cases. It includes laser alone or combined with chemotherapy, cryotherapy and brachytherapy. The indication for external beam radiotherapy should be restricted to large ocular tumors and diffuse vitreous seeding because of the risk of late effects, including secondary sarcoma. Vital prognosis, related to retinoblastoma alone, is now excellent in patients with unilateral or bilateral forms of retinoblastoma. Long term follow-up and early counseling regarding the risk of second primary tumors and transmission should be offered to retinoblastoma patients

    TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma

    Get PDF
    Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association wit

    The transcriptional landscape of Shh medulloblastoma

    Get PDF
    © The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.info:eu-repo/semantics/publishedVersio

    Cytogenetic Prognostication Within Medulloblastoma Subgroups

    Get PDF
    PURPOSE: Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. PATIENTS AND METHODS: Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. RESULTS: Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. CONCLUSION: Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials

    Failure of human rhombic lip differentiation underlies medulloblastoma formation

    Get PDF
    Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain 1–4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage 5–8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL 9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage 3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES +KI67 + unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB

    The risk of valvular heart disease in the French Childhood Cancer Survivors’ Study: Contribution of dose-volume histogram parameters

    No full text
    International audienceBackground and purpose: Valvular Heart Disease (VHD) is a known complication of childhood cancer after radiotherapy treatment. However, the dose-volume-effect relationships have not been fully explored. Materials and methods: We obtained individual heart Dose Volume Histograms (DVH) for survivors of the French Childhood Cancer Survivors Study (FCCSS) who had received radiotherapy. We calculated the Mean Dose to the Heart (MHD) in Gy, as well as the heart DVH parameters (Vd Gy, which represents the percentage of heart volume receiving at least d Gy), fixing the thresholds to 0.1 Gy, 5 Gy, 20 Gy, and 40 Gy. We analyzed them furtherly in the subpopulation of the cohort that was treated with a dose lower than 5 Gy (V0.1Gy|V5Gy=0%), 20 Gy (V5Gy|V20Gy=0%), and 40 Gy (V20Gy|V40Gy=0%), respectively. We investigated their role in the occurrence of a VHD in this population-based observational cohort study using the Cox proportional hazard model, adjusting for age at cancer diagnosis and chemotherapy exposure. Results: Median follow-up was 30.6 years. Eighty-one patients out of the 7462 (1 %) with complete data experienced a severe VHD (grade ≄ 3). The risk of VHD increased along with the MHD, and it was associated with high doses to the heart (V40Gy 50 %, HR = 5.03, 95 % CI: [2.35–10.76]). Doses 5–20 Gy to more than 50 % (V5Gy|V20Gy=0% >50 %) of the heart induced a marginally non-significant estimated risk. We also observed a remarkable risk increase with attained age. Conclusions: Our results provide new insight into the VHD risk that may impact current treatments and long-term follow-up of childhood cancer survivors

    Feasibility and clinical integration of molecular profiling for target identification in pediatric solid tumors

    No full text
    International audienceBackground: The role of tumor molecular profiling in directing targeted therapy utilization remains to be defined for pediatric tumors. We aimed to evaluate the feasibility of a sequencing and molecular biology tumor board (MBB) program, and its clinical impact on children with solid tumors. Procedure: We report on a single-center MBB experience of 60 pediatric patients with a poor prognosis or relapsed/refractory solid tumors screened between October 2014 and November 2015. Tumor molecular profiling was performed with panel-based next-generation sequencing and array comparative genomic hybridization. Results: Mean age was 12 ± 5.7 years (range 0.1–21.5); main tumor types were high-grade gliomas (n = 14), rare sarcomas (n = 9), and neuroblastomas (n = 8). The indication was a poor prognosis tumor at diagnosis for 16 patients and relapsed (n = 26) or refractory disease (n = 18) for the remaining 44 patients. Molecular profiling was feasible in 58 patients. Twenty-three patients (40%) had a potentially actionable finding. Patients with high-grade gliomas had the highest number of targetable alterations (57%). Six of the 23 patients subsequently received a matched targeted therapy for a period ranging from 16 days to 11 months. The main reasons for not receiving targeted therapy were poor general condition (n = 5), pursuit of conventional therapy (n = 6), or lack of pediatric trial (n = 4). Conclusions: Pediatric molecular profiling is feasible, with more than a third of patients being eligible to receive targeted therapy, yet only a small proportion were treated with these therapies. Analysis at diagnosis may be useful for children with very poor prognosis tumsors
    corecore