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Abstract Telomerase reverse transcriptase (TERT)
promoter mutations were recently shown to drive telom-
erase activity in various cancer types, including medul-
loblastoma. However, the clinical and biological impli-
cations of TERT mutations in medulloblastoma have not
been described. Hence, we sought to describe these muta-
tions and their impact in a subgroup-specific manner. We
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analyzed the TERT promoter by direct sequencing and
genotyping in 466 medulloblastomas. The mutational dis-
tributions were determined according to subgroup affilia-
tion, demographics, and clinical, prognostic, and molecu-
lar features. Integrated genomics approaches were used
to identify specific somatic copy number alterations in
TERT promoter-mutated and wild-type tumors. Over-
all, TERT promoter mutations were identified in 21 % of
medulloblastomas. Strikingly, the highest frequencies of

C. Koelsche - A. Korshunov - A. von Deimling (I<)
Department of Neuropathology, University Hospital Heidelberg,
Heidelberg, Germany

e-mail: andreas.vondeimling@med.uni-heidelberg.de

C. Koelsche - A. Korshunov - A. von Deimling
Clinical Cooperation Unit Neuropathology, German Cancer
Research Center (DKFZ), Heidelberg, Germany

P. A. Northcott - M. Kool - D. T. W. Jones - S. M. Pfister
Division of Pediatric Neurooncology, German Cancer Research
Center (DKFZ), Heidelberg, Germany

J. M. Kros
Department of Pathology, Erasmus Medical Center, Rotterdam,
The Netherlands

P. J. French

Department of Neurology, Erasmus Medical Center, Rotterdam,
The Netherlands

@ Springer


https://core.ac.uk/display/43318712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s00401-013-1198-2

918

Acta Neuropathol (2013) 126:917-929

TERT mutations were observed in SHH (83 %; 55/66) and
WNT (31 %; 4/13) medulloblastomas derived from adult
patients. Group 3 and Group 4 harbored this alteration in
<5 % of cases and showed no association with increased
patient age. The prognostic implications of these mutations
were highly subgroup-specific. TERT mutations identified
a subset with good and poor prognosis in SHH and Group
4 tumors, respectively. Monosomy 6 was mostly restricted
to WNT tumors without TERT mutations. Hallmark SHH
focal copy number aberrations and chromosome 10q dele-
tion were mutually exclusive with TERT mutations within
SHH tumors. TERT promoter mutations are the most com-
mon recurrent somatic point mutation in medulloblas-
toma, and are very highly enriched in adult SHH and WNT
tumors. TERT mutations define a subset of SHH medul-
loblastoma with distinct demographics, cytogenetics, and
outcomes.
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Introduction

Medulloblastoma is a highly malignant embryonal brain
tumor located in the posterior fossa [6, 29, 33, 35]. While
this tumor comprises the most common malignant brain
tumor in children, it only accounts for approximately
1 % of primary CNS tumors in adults [18, 20]. The cur-
rent consensus recognizes four core molecular subgroups
(WNT, SHH, Group 3, and Group 4) with distinct molecu-
lar, demographic, clinicopathological, and prognostic char-
acteristics [5, 15, 16, 26, 27, 37, 38, 41, 42]. The defining
features of medulloblastoma subgroups differ dramatically
according to age at diagnosis [15, 27, 41]. Specifically,
Group 3 tumors are largely confined to non-adults, SHH
tumors are most frequent in infants and adults, while WNT
and Group 4 medulloblastomas are mostly observed in
pediatric cohorts [15, 24, 27, 38, 41]. Particularly within
SHH tumors, age-associated heterogeneity was observed
regarding the transcriptional characteristics, somatic copy
number alterations (SCNA), and the prognostic impli-
cations of biomarkers [15, 18, 38, 40]. Delineation of
tumorigenic features characteristic for these age-related
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differences, particularly within SHH tumors, are highly
desirable to understand these clear biological and prognos-
tic discrepancies.

Telomere maintenance is fundamentally important to
normal self-renewing stem cells and cancer cells [3, 7, 9,
14, 22]. It has been suggested that tumors derived from cell
populations with low self-renewal capacity generally rely
on alterations that restore telomerase activity, while epi-
genetic mechanisms maintain telomerase activity in tumor
types derived from self-renewing stem cells [13]. The iden-
tification of recurrent telomerase reverse transcriptase
(TERT) promoter mutations in 21 % of 91 medulloblasto-
mas [13] is intriguing, since other mechanisms converg-
ing on increased telomerase activity including alternative
lengthening of telomeres (ALT) [8] or mutations affect-
ing the ATRX/DAXX complex are excessively uncommon
in medulloblastoma [12, 25, 32, 34, 39]. Although TERT
mutations have been reported in several cancers [2, 10, 11,
13, 19, 43], their putative association with distinct biologi-
cal behavior and clinical or even prognostic characteristics
has not been comprehensively studied. The initial analyses
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of TERT mutations in medulloblastoma [12] mainly cata-
logued the mutational frequency rather than correlating the
molecular and clinical features of these mutations in a sub-
group-specific manner.

In this study, we analyzed a representative set of 466
medulloblastomas for TERT promoter mutations. Sub-
sequently, we correlated the mutational distribution with
clinicopathological features, outcome, and molecular char-
acteristics in a subgroup-specific manner. We demonstrate
that TERT promoter mutations comprise the most recurrent
mutation in adult SHH tumors identified to date and poten-
tially define distinct prognostic subgroups in SHH and
Group 4 medulloblastoma patients.

Materials and methods
Tumor material and patient characteristics

All tissues and clinicopathological information were seri-
ally collected in accordance with institutional review boards
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from various contributing centers to this study. Nucleic acid
extractions were carried out as previously described [28].
The clinicopathological characteristics of the investigated
patient cohort are outlined in Table 1. The median follow-
up was 44.06 months (range 0.7-301.5 months).

Gene expression and copy number analysis

Subgroup affiliation was determined using nanoString
limited gene expression profiling as previously described
[31]. Somatic copy number alterations were assessed on
the Affymetrix Single Nucleotide Polymorphism (SNP)
6.0 array platform in 418 of 466 cases to identify SCNAs
specific for TERT mutant and wild-type tumors. Raw
copy number estimates were obtained in dChip, followed
by CBS segmentation in R as previously described [30].
Somatic copy number alterations were identified using
GISTIC2 [21]. TERT expression levels were compared
using R2 (www.r2.amc.nl). Differences in expression were
tested using one-way ANOVA.

Sanger sequencing

Isolated DNA (25 ng) from all 466 tumors and 7 matched
germline samples (25 ng) was amplified by PCR. PCRs
contained 1 wl DNA template, 10 uM forward (5’-CAG
GGC ACG CAC ACC AG-3') and reverse (5’-GTC CTG
CCC CTT CAC CTT C-3’) TERT-specific primers, and

A. Huang - E. Bouffet - D. Malkin - U. Tabori

Division of Haematology and Oncology, Department

of Pediatrics, The Hospital for Sick Children, University
of Toronto, Toronto, ON, Canada

C. E. Hawkins
Department of Pathology, The Hospital for Sick Children,
Toronto, ON, Canada

W. A. Weiss
Department of Neurology, University of California,
San Francisco, San Francisco, CA, USA

U. Schiiller
Center for Neuropathology and Prion Research, University
of Munich, Munich, Germany

L. F. Pollack
Department of Neurological Surgery, School of Medicine,
University of Pittsburgh, Pittsburgh, PA, USA

S. Rutkowski
Department of Pediatric Hematology and Oncology, University
Medical Center Hamburg-Eppendorf, Hamburg, Germany

D. Meyronet - A. Jouvet

Neuro-oncology and Neuro-inflammation Team, Inserm U1028,
CNRS UMR 5292, Neuroscience Center, University Lyon 1,
69000 Lyon, France

@ Springer

12.5 pl HotStar Tag Plus Master Mix (Qiagen, Gaith-
ersburg, Maryland, USA) in a 25 ul total reaction vol-
ume. Cycle parameters comprised 95 °C x 15 min; 28
cycles of 98 °C x 40 s, 65 °C x 30 s, 72 °C x 1 min;
72 °C x 10 min. PCRs were carried out using the C1000
Thermal Cycler (BioRad, Hercules, CA, USA). PCR prod-
ucts were purified with the PureLink PCR Micro kit (Life
Technologies, Burlington, ON, Canada). In all experiments,
controls were included in the absence of DNA to rule out
contamination by PCR products. Templates for Sanger
sequencing were analyzed with forward (5-CAG CGC
TGC CTG AAA CTC-3’) and reverse (5’-GTC CTG CCC
CTT CAC CTT C-3') sequencing primers using dGTP Big-
Dye Terminator v3.0 Cycle Sequencing Ready Reaction Kit
(Life Technologies), and 5 % DMSO on the ABI3730XL
capillary genetic analyzer (Life Technologies).

Genotyping assay

Two primers (forward primer, 5'-CAG CGC TGC CTG
AAA CTC-3'; reverse primer, 5-GTC CTG CCC CTT
CAC CTT C-3’) were designed to amplify a 163-bp prod-
uct encompassing C228T and C250T hotspot mutations
in the TERT promoter—corresponding to the positions
124 and 146 bp, respectively, upstream of the ATG start
site. Two fluorogenic LNA probes were designed with
different fluorescent dyes to allow single-tube genotyp-
ing. One probe was targeted to the WT sequence (TERT
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Table 1 Clinicopathological and molecular characteristics according
to TERT mutational status

Characteristic TERT MUT TERTWT p value
Age (years)
Median 22.00 7.08 <0.0001*
Range 0.66—49.00 0.24-56.32
NA 1 0
Gender
Male 56 236 0.47°
Female 37 129
NA 3 5
Histology
MBEN 3 8 0.59*
Desmoplastic 10 59
Classic 46 217
LC/A 11 38
NA 26 48
M-stage
MO 58 240 0.03°
M1-3 12 103
NA 26 27
TP53 status
MUT 4 12 0.78°
WT 42 97
NA 50 261
Subgroup
WNT 6 47 <0.0001*
SHH 80 133
Group 3 2 48
Group 4 8 142

F female, LC/A large cell/anaplastic, M male, MB medulloblastomal,
MBEN medulloblastoma with extensive nodularity, NA not available
(data were excluded from statistical comparison)

Bold values indicate p < 0.05
# Mann-Whitney U test
® Fisher’s exact test

* Chi-square test

WT, 5'-5SHEX-CCC CTC CCG G-31ABkFQ-3'), and one
was targeted to either of the two mutations (TERT mut,
5/-56FAM-CCC CTT CCG G-3IABKFQ). Primer and
probes were custom designed by Integrated DNA Technol-
ogies (Coralville, Iowa, USA) using internal SNP design
software, and sequence homogeneity was confirmed by
comparison to all available sequences on the GenBank
database using BLAST (http://www.ncbi.nlm.nih.gov/
BLASTY/). Primers were optimized to avoid for hairpins and
homo- and heterodimers. Primers and probes were obtained
from Integrated DNA Technologies.

Real-time PCR was performed in 25 pl reaction mix-
tures containing 12.5 pl of TagMan Universal Master Mix

IT with UNG (Applied Biosystems), 900 nM concentrations
of each primer, 250 nM TERT WT probe, 250 nM TERT
MUT probe, and 1 pl (25 ng) of sample DNA. Thermocy-
cling was performed on the StepOnePlus (Applied Biosys-
tems) and consisted of 2 min at 50 °C, 10 min at 95 °C, and
40 cycles of 95 °C for 15 s and 60 °C for 1 min.

Analysis was performed using StepOne Software, ver-
sion 2.1. Samples were considered mutant if they had CT
values of <39 cycles. Each sample was verified visually by
examining the PCR curves generated to eliminate false pos-
itives due to aberrant light emission. End-point allelic dis-
crimination genotyping was performed by visually inspect-
ing a plot of the fluorescence from the WT probe versus
the MUT probe generated from the post-PCR fluorescence
read.

Statistical analysis

Survival time according to TERT mutational status was
assessed using the Kaplan—Meier estimate and a log-rank
test. Comparisons of binary and categorical patient char-
acteristics between subgroups and cohorts were performed
using the two-sided Fisher’s exact test or Chi-squared test.
Continuous variables were analyzed using the Mann—Whit-
ney U test. p values <0.05 were considered statistically sig-
nificant. Multivariate Cox proportional hazards regression
was used to adjust for additional covariates using the sur-
vival R package (v.2.36). All other statistical analyses were
performed using StataSE 12 (Stata Corp. College Station,
TX, USA) and Graphpad Prism 5 (La Jolla, CA, USA).

Results
Characteristics of TERT-mutated medulloblastomas

We performed Sanger sequencing on a clinically well-
annotated medulloblastoma cohort (n = 466), reflecting
the spectrum of demographics and histological subtypes
of the disease (Table 1; Supplementary Figure 1A). Our
results were verified using a Tagman-based genotyping
assay that detects both of the most highly recurrent TERT
promoter mutations (C228T and C250T). Since both
mutational hotspots are located in highly homologous
sequences, C228T and C250T mutations result in an iden-
tical binding sequence for the mutation-specific probe
(CCCGGAAGGGG; Supplementary Figure 1B). A total
of 21 % of medulloblastomas harbored TERT mutations
(Fig. 1a). In line with a previous report, these mutations were
enriched in older patients (Table 1; p < 0.0001), all muta-
tions were heterozygous, and none of the available matched
germline controls displayed this mutation [13]. Interestingly,
we found that TERT-mutated medulloblastomas present less

@ Springer
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Fig. 1 TERT promoter-mutated a
medulloblastomas display dis-

tinct demographics, histology,
and subgroup affiliation. a Bar
graph indicating the frequency
of TERT mutations in 466
primary medulloblastomas. b
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frequently with metastatic dissemination at diagnosis com-
pared to TERT wild-type tumors (p = 0.03).

TERT mutations are specifically enriched in SHH
medulloblastomas

In a subgroup-specific analysis, we revealed that TERT
mutations were significantly enriched in SHH tumors
(80/213; 38 %; p < 0.0001) compared to WNT (6/53; 11 %)
and Group 3 (2/50; 4 %) or Group 4 tumors (8/150; 5 %).
TERT mutations in both WNT and SHH medulloblasto-
mas were positively correlated with age. TERT mutations
were significantly enriched in adult patients (Fig. lc, d,
both p < 0.0001). Increasing age was not associated with
increased mutational frequency in either Group 3 or Group
4 tumors (n.s.). While histopathological features were simi-
lar between TERT-mutated and wild-type tumors across
subgroups, we observed that classic histology was more
commonly observed in TERT mutant SHH tumors, and
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desmoplastic histology in wild-type SHH tumors (Fig. le;
Table 2; p = 0.04), respectively.

Prognostic implications of TERT mutations

When medulloblastoma patients across all subgroups
were stratified by TERT mutational status, we observed
no significant differences in survival (Fig. 2a; p = 0.45).
Further after normalizing the subgroup composition to
reported subgroup ratios, a statistical difference was still
not revealed (data not shown; p = 0.36) [1, 15, 26, 41].
However, when TERT mutational status is re-analyzed in a
subgroup-specific manner, several important survival asso-
ciations are observed. TERT mutations had no prognostic
impact within WNT tumors (Fig. 2b; p = 0.17). However,
a significant association between TERT promoter mutations
and outcomes was noted in SHH and Group 4 medullo-
blastomas. Specifically, the 5-year overall survival of SHH
tumors with and without TERT mutations was 77.6 = 7 %
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Table 2 Clinicopathological and molecular characteristics of SHH
medulloblastoma according to TERT mutational status

Characteristic TERT MUT TERTWT p value
Age (years)
Median 25.00 3.00 <0.0001*
Range 0.66-49.00 0.24-52.00
NA 1 0
Gender
Male 46 80 0.77®
Female 31 48
NA 3 5
Histology
MBEN 3 4 0.04*
Desmoplastic 10 44
Classic 34 47
LC/A 10 16
NA 23 22
M-stage
MO 46 87 0.84°
M1-3 10 22
NA 24 24
TP53 status
MUT 4 8 1®
WT 38 71
NA 38 54

F female, LC/A large cell/anaplastic, M male, MB medulloblastoma,
MBEN medulloblastoma with extensive nodularity, NA not available
(data were excluded from statistical comparison)

Bold values indicate p < 0.05
# Mann-Whitney U test
® Fisher’s exact test

X Chi-square test

and 64.1 + 5.1 %, respectively (Fig. 2c; p = 0.04). In
contrast to the improved prognosis of TERT mutant
SHH tumors, we observed the inverse pattern in Group 4
tumors where the 5-year overall survival for patients with-
out and with TERT mutations was 73.3 % *+ 4.3 % and
62.5 % £+ 17.1 % (Fig. 2d; p = 0.04). Similar to the unfa-
vorable prognosis of TERT mutations in Group 4 tumors,
both of the patients with TERT-mutated Group 3 tumors
died after 7 and 45 months of follow-up, respectively (Sup-
plementary Table 1). Thus, we conclude that TERT muta-
tions define distinct prognostic patient cohorts in a sub-
group-specific fashion with good prognosis in SHH and
poor prognosis in Group 4 medulloblastomas.

Survival analysis restricted to specific age groups

As TERT mutations are predominantly observed in non-
infant medulloblastomas, we evaluated the prognostic

implications of these promoter mutations across all four
medulloblastoma subgroups in an age-dependent manner.
TERT mutational status across subgroups had no prog-
nostic impact among patients older than 3 years of age at
diagnosis (Fig. 3a; p = 0.59). Interestingly, the prognos-
tic impact of TERT mutation was more pronounced in the
non-infant SHH population with a 5-year overall survival
of 76.9 % £ 7.6 % and 59.3 % =+ 6.9 % of non-infants
with and without TERT promoter mutations, respectively
(Fig. 3b; p = 0.019). These prognostic implications were
similar in adult medulloblastoma patients and in the adult
SHH subgroup (Supplementary Figure 2). In a subset of
76 SHH cases with known TP53 mutational status [44],
we revealed that TP53 mutations identify non-infant SHH
tumors with a particularly poor prognosis, while in con-
trast TERT mutations identify a subsets with good prog-
nosis (Fig. 3c; p = 0.047). Mutations of both TERT and
TP53 were observed in 4/12 SHH tumors (Supplementary
Table 2). Non-infant Group 4 showed an inverse prognos-
tic association with poor outcome of TERT-mutated cases
(Fig. 3d; p = 0.024). Lastly, we analyzed the overall sur-
vival of SHH patients under a multivariate Cox propor-
tional hazards model comprising age at diagnosis, TERT
mutational status, M-stage, and histology. In addition to the
known prognostic significance of M-stage (p < 0.001) and
histology (p = 0.02), we revealed that TERT status con-
tinued to be associated with good prognosis (HR 0.17, CI
0.04-0.69, p = 0.01), independent of other prognostic fac-
tors including age at diagnosis (p = 0.35).

Distinct somatic copy number alterations of TERT-mutated
medulloblastomas

To identify additional genetic features associated with these
distinct demographic and clinical differences, we evaluated
broad and focal copy number alterations according to sub-
group affiliation and TERT promoter mutations. Notably,
only 1/6 (17 %) of TERT-mutated WNT tumors harbored
monosomy 6, while this alteration is observed in approxi-
mately 80 % of TERT wild-type medulloblastomas of the
WNT subgroup (Fig. 4a; p = 0.005). Loss of chromo-
some 2 and 10q loss were significantly enriched in TERT
wild-type SHH tumors, while 3q loss was more frequently
observed in their TERT mutant counterparts (Fig. 4b). Pre-
viously described focal alterations characteristic for SHH
tumors including amplification of MYCN/GLI2/CDK6/
YAPI/PPMID, and deletions targeting PTCHI/CDKN2A/
CDKN2B/PTEN were largely confined to TERT wild-type
SHH medulloblastomas, while TERT mutant SHH (Fig. 5)
and Group 4 (Supplementary Figure 3) showed very few
focal SCNAs. Consistent with the higher frequency of
TERT mutations in SHH tumors, we observed increased
TERT expression in the SHH subgroup compared to Group
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Fig. 2 Prognostic impact of TERT promoter mutations varies accord-
ing to medulloblastoma subgroups. Kaplan—Meier estimate display-
ing overall survival (OS) according to TERT mutational status in pri-

4 tumors in two independent gene expression profiling
studies (p < 0.001; Supplementary Figure 4). Furthermore,
we observed TERT amplification in two tumors included in
the entire cohort of 1,088 previously studied tumors [30].
Both of these cases with TERT amplification were SHH-
driven medulloblastomas with wild-type TERT status,
which were derived from pediatric patients who were both
alive after 15 and 83 months of follow-up (Supplementary
Figure 5). Thus, broad and focal SCNAs underline that
TERT mutations define a genetically distinct subset within
SHH tumors and possibly within the WNT and Group 4
tumors.

Discussion
The underlying biology of adult medulloblastomas remains
poorly understood. Next-generation sequencing stud-

ies have revealed a broad spectrum of novel, potentially
tumorigenic mutations in the recent past, but none of these
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studies focused on adult medulloblastomas [12, 25, 32, 34,
39]. In addition, the vast majority of these mutations are
not recurrent enough to stratify patients into distinct clini-
cal and prognostic subgroups.

In this study, we demonstrate that TERT promoter muta-
tions, initially described in melanoma [10, 11], comprise
the most recurrent mutation described so far across medul-
loblastoma subgroups, with a particular enrichment in
older patient cohorts. These somatic mutations are espe-
cially common in older patients with SHH tumors (83 %)
and to a lesser extent in adults with WNT medulloblasto-
mas (11 %). Based on the transcriptional heterogeneity of
SHH tumors in infant and adult patients, we suspect that
the adult cluster mainly comprised TERT-mutated medul-
loblastomas [24]. According to the initial classification of
tumor types with TERT mutations at frequencies over 15 %
(TERT-high) vs. below this threshold (TERT-low) [13], our
report suggests distinct baseline telomerase activity of the
cell of origin in each of the subgroups (Group 3 > Group
4 > WNT >> SHH). Furthermore, the identification of



Acta Neuropathol (2013) 126:917-929

925

Non-infant medulloblastomas across subgroups

OS Probability

p=0.59
T T T T T T T T T T

3 4 5 6 7 8 9 10
Overall survival (years)

Number at risk
290 261 223 176 141 114 90 63 49 36 32
MUT 70 64 61 46 33 28 23 22 15 M 8

[ TERT WT —— TERT MUT |

Non-infant SHH medulloblastomas

T T S |

feeeeeaa.d b d e

OS Probability
o
3

0.25 4
0.00 4 : p=0.047
T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Overall Survival (years)
Number at risk
36 32 23 20 15 13 9 7 5 3 3
TERT MUT 34 31 29 21 17 14 13 12 8 5 3
TP53 MUT 6 5 4 3 2 1 1 0 0 0 0
[-—--- TERT /TP53 WT TERT MUT -oooeeee TP53 MUT]

Fig. 3 TERT promoter mutations delineate prognostic subsets within
non-infant SHH and Group 4 medulloblastomas. Kaplan-Meier esti-
mate displaying overall survival (OS) in non-infant medulloblastomas
(>3 years of age at diagnosis) according to TERT mutational status

Fig. 4 WNT and SHH medul-
loblastoma harbor distinct a
broad genomic imbalances

depending on the mutational
6p loss+

WNT tumors

Non-infant SHH medulloblastomas

o —
N =)
o IS}
A :

L,
w
Medloou

lous_wy
[ SRR

0.50 -

OS Probability
o
&

0.00 p=0.019

01 2 3 4 5 6 7 8 9 10
Overall Survival (years)

Number at risk
WT 66 55 38 31 25 21 13 9 7 5 5
MUT 54 49 47 32 23 18 17 16 12 8 5

TERT WT TERT MUT l

l____

Non-infant Group 4 medulloblastomas

1.00 4
£ 0.75 TS ey
= S
3
o 0.50 -
o
n ]
o 0.25
0.00 p=0.024
o 1 2 3 4 5 6 7 8 9 10
Overall Survival (years)
Number at risk
T 137 132 121 94 75 57 50 35 26 20 17
MUT 8 8 7 7 5 5 1 1 0 0 0
[---- TERT wT —— TERT MUT |

across subgroups (a), in SHH tumors (b), in SHH tumors (7P53
mutated/wild-type) (c), and Group 4 (d). Survival differences were
calculated using continuous log-rank tests

b SHH tumors

=

chr. 2 loss 4 * Kk

* K

status of TERT. Bar graphs

indicating the frequency of
broad cytogenetic alterations in
WNT (a), and SHH (b) tumors.

3q loss

*% p<0.01; % p<0.05 MUT
mutation, WT wild-type

6q loss

*

10q loss

] ] ]
0.2 0.4 0.6
Frequency
[l TERT MUT (n=6)

] TERT WT (n=43)

0.0

0.8

1.0

IHIH

-1 *

0.0 0.1 0.2 0.3 0.4
Frequency

Bl TERT MUT (n=64)
[ TERTWT (n=108)

recurrent TERT promoter mutations makes a compelling
argument that the increasing availability of whole-genome
sequencing results may substantially add to a refined under-
standing of the mutational landscape of different biological
and age-driven medulloblastoma subgroups, since earlier

next-generation sequencing studies focusing on the pro-
tein-coding regions had not encompassed gene-regulatory
regions including promoter mutations.

In this study, we demonstrate that the mutational status
of the TERT promoter can segregate individuals with SHH
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«Fig. 5 Focal somatic copy number alterations are largely confined
to TERT wild-type SHH medulloblastomas. GISTIC2 analysis indi-
cating focal amplifications/deletions in 108 wild-type (a, ¢) and 64
mutant (b, d) SHH tumors, respectively. Star regions enriched for
reported DNA copy number variations

and Group 4 medulloblastomas with distinct prognostic
outcomes, while a prognostic impact of this mutation was
not observed in glioblastomas [23]. Molecular mecha-
nisms converging on TERT up-regulation were recently
reported to be associated with dismal prognosis in pediat-
ric brain cancers [4]. Our findings in Group 4 tumors with
TERT mutations follow this pattern, while SHH tumors
with TERT mutations comprise a prognostically favorable
subgroup. Notably, survival curves of SHH tumors increas-
ingly approximate with extended follow-up. We hypoth-
esize that this pattern might be due to secondary malignan-
cies and late relapses in older SHH tumors [36-38]. Since
virtually all of the TERT promoter mutations encompass
the mutational hotspots C228T and C250T, patient strati-
fication can be carried out using a single PCR followed
up with Sanger sequencing or with a single experiment
using our newly designed Tagman-based genotyping assay.
The latter assay is particularly suitable for routine clini-
cal applications as it is highly sensitive and specific (5 ng
DNA input is sufficient). Furthermore, our Tagman-based
genotyping assay can be used on DNA derived from fresh-
frozen and formalin-fixed paraffin-embedded tissue, since
it only amplifies a short DNA fragment.

Both hotspot mutations C228T and C250T create an
E-twenty-six (ETS) binding motif [10, 11] resulting in
up-regulation of TERT expression at the mRNA level [2],
which was not observed at the protein level in glioblas-
tomas [43]. We now demonstrate that SHH tumors with
TERT mutations are mostly mutually exclusive with those
harboring 10q loss (p = 0.017) Notably, the relatively
favorable prognosis of TERT-mutated SHH medulloblas-
tomas may be explained by the relative lack of high-risk
biomarkers [17, 18, 24, 44].

In summary, we describe the demographic, clinico-
pathological, and biological implications of TERT pro-
moter mutations in a subgroup-specific fashion. This study
underlines the dependence of adult WNT and SHH tumors
to reacquire telomerase activity and suggests a potential
prognostic utility of TERT mutational analysis in an era of
individualized therapy.
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