94 research outputs found

    Nutrient flux and budget in the Ebro estuary

    Full text link
    The Ebro river flows to the Mediterranean coast of Spain. During its final stretch, the Ebro behaves in a similar way to a highly stratified estuary. This paper describes the transport of nutrients to the Ebro estuary, evaluates the general movement of nutrients in the estuarine region, using a mass balance approach, and estimates the amounts of nutrients discharged to the coastal environment. Given the strong saline stratification, this study only includes the surface layer that contains the continental freshwater. The annual nutrient budget for the Ebro estuary shows a net excess for nitrogen and phosphorus, while silicate almost attains equilibrium between addition and removal. There are several reasons for gains in nitrogen and phosphorous: a contribution of dissolved and particulate compounds in the freshwater (some of which are mineralized); a lower uptake of phytoplankton indicated by chlorophyll reduction in the estuary; an entrainment of the nutrient-rich upper part of the salt wedge; and, to a lesser extent, the impact of wastewater and agricultural water use. The biggest load discharged into the Mediterranean Sea by the Ebro is nitrogen, followed by silicate with over 10 000 tons of each deposited annually. Phosphorus is discharged at relatively low concentrations and with an annual load of about 200 t yr¿1.This project was funded by the European Union in the framework of the MAST-III research project: "Preparation and Integration of Analysis Tools towards Operational Forecast of Nutrients in Estuaries of European Rivers (PIONEER)", Reference No. MAS3-CT98-0170.Falco Giaccaglia, SL.; Niencheski, L.; Rodilla Alamá, M.; Romero Gil, I.; González Del Rio Rams, J.; Sierra, J.; Mösso, C. (2010). Nutrient flux and budget in the Ebro estuary. Estuarine, Coastal and Shelf Science. 87(1):92-102. doi:10.1016/j.ecss.2009.12.020S9210287

    The Cholecystectomy As A Day Case (CAAD) Score: A Validated Score of Preoperative Predictors of Successful Day-Case Cholecystectomy Using the CholeS Data Set

    Get PDF
    Background Day-case surgery is associated with significant patient and cost benefits. However, only 43% of cholecystectomy patients are discharged home the same day. One hypothesis is day-case cholecystectomy rates, defined as patients discharged the same day as their operation, may be improved by better assessment of patients using standard preoperative variables. Methods Data were extracted from a prospectively collected data set of cholecystectomy patients from 166 UK and Irish hospitals (CholeS). Cholecystectomies performed as elective procedures were divided into main (75%) and validation (25%) data sets. Preoperative predictors were identified, and a risk score of failed day case was devised using multivariate logistic regression. Receiver operating curve analysis was used to validate the score in the validation data set. Results Of the 7426 elective cholecystectomies performed, 49% of these were discharged home the same day. Same-day discharge following cholecystectomy was less likely with older patients (OR 0.18, 95% CI 0.15–0.23), higher ASA scores (OR 0.19, 95% CI 0.15–0.23), complicated cholelithiasis (OR 0.38, 95% CI 0.31 to 0.48), male gender (OR 0.66, 95% CI 0.58–0.74), previous acute gallstone-related admissions (OR 0.54, 95% CI 0.48–0.60) and preoperative endoscopic intervention (OR 0.40, 95% CI 0.34–0.47). The CAAD score was developed using these variables. When applied to the validation subgroup, a CAAD score of ≤5 was associated with 80.8% successful day-case cholecystectomy compared with 19.2% associated with a CAAD score >5 (p < 0.001). Conclusions The CAAD score which utilises data readily available from clinic letters and electronic sources can predict same-day discharges following cholecystectomy

    An early warning system for groundwater flooding in the Chalk

    Get PDF
    An early warning system has been developed for groundwater flooding and trialled in the Patcham area of Brighton. It provides a fit-for-purpose approach for forecasting groundwater flood events in the Chalk and is capable of operating across longer time scales than had previously been possible. The method involves a set of nested steps or tasks. Initially, the catchment’s response to recharge is determined and, using a representative hydrograph, a simple regression model that relates annual groundwater level minima and autumn and winter rainfall to subsequent annual maxima is developed. The regression model is then applied at the end of each summer recession using the observed annual minimum and estimates of winter rainfall to predict the following groundwater level maximum. Based on the results of this prediction a variety of steps may then be appropriate. Where the model predicts potentially high groundwater levels the frequency of groundwater level monitoring observations can be increased. A novel element of the method developed is the monitoring of changes in the matric potential of the unsaturated zone. Specific trigger levels to initiate either the next step of the method or promulgation of warnings of varying severity will be developed through experience of use of the system

    Procedural shape modeling in digital humanities: Potentials and issues

    No full text
    Procedural modeling is a technology that has great potential to make the abundant variety of shapes that have to be dealt with in Digital Humanities accessible and understandable. There is a gap, however, between technology on the one hand and the needs and requirements of the users in the Humanities community. In this paper we analyze the reasons for the limited uptake of procedural modeling and sketch possible ways to circumvent the problem. The key insight is that we have to find matching concepts in both fields, which are on the one hand grounded in the way shape is explained, e.g., in art history, but which can also be formalized to make them accessible to digital computers

    A review of the impact of climate change on future nitrate concentrations in groundwater of the UK

    Get PDF
    This paper reviews the potential impacts of climate change on nitrate concentrations in groundwater of the UK using a Source–Pathway–Receptor framework. Changes in temperature, precipitation quantity and distribution, and atmospheric carbon dioxide concentrations will affect the agricultural nitrate source term through changes in both soil processes and agricultural productivity. Non-agricultural source terms, such as urban areas and atmospheric deposition, are also expected to be affected. The implications for the rate of nitrate leaching to groundwater as a result of these changes are not yet fully understood but predictions suggest that leaching rate may increase under future climate scenarios. Climate change will affect the hydrological cycle with changes to recharge, groundwater levels and resources and flow processes. These changes will impact on concentrations of nitrate in abstracted water and other receptors, such as surface water and groundwater-fed wetlands. The implications for nitrate leaching to groundwater as a result of climate changes are not yet well enough understood to be able to make useful predictions without more site-specific data. The few studies which address the whole cycle show likely changes in nitrate leaching ranging from limited increases to a possible doubling of aquifer concentrations by 2100. These changes may be masked by nitrate reductions from improved agricultural practices, but a range of adaption measures need to be identified. Future impact may also be driven by economic responses to climate change
    • …
    corecore