319 research outputs found

    Glacier change and glacial lake outburst flood risk in the Bolivian Andes

    Get PDF
    Glaciers of the Bolivian Andes represent an important water resource for Andean cities and mountain communities, yet relatively little work has assessed changes in their extent over recent decades. In many mountain regions, glacier recession has been accompanied by the development of proglacial lakes, which can pose a glacial lake outburst flood (GLOF) hazard. However, no studies have assessed the development of such lakes in Bolivia despite recent GLOF incidents here. Our mapping from satellite imagery reveals an overall areal shrinkage of 228.1 ± 22.8 km2 (43.1 %) across the Bolivian Cordillera Oriental between 1986 and 2014. Shrinkage was greatest in the Tres Cruces region (47.3 %), followed by the Cordillera Apolobamba (43.1 %) and Cordillera Real (41.9 %). A growing number of proglacial lakes have developed as glaciers have receded, in accordance with trends in most other deglaciating mountain ranges, although the number of ice-contact lakes has decreased. The reasons for this are unclear, but the pattern of lake change has varied significantly throughout the study period, suggesting that monitoring of future lake development is required as ice continues to recede. Ultimately, we use our 2014 database of proglacial lakes to assess GLOF risk across the Bolivian Andes. We identify 25 lakes that pose a potential GLOF threat to downstream communities and infrastructure. We suggest that further studies of potential GLOF impacts are urgently required

    Nitrogen storage and use of biochemical indices to assess nitrogen deficiency and growth rate in natural plankton populations

    Get PDF
    Various newly developed indicators of N deficiency, physiological state (approximate growth rate), and N source for growth were measured during five cruises to Dabob Bay, Washington from early spring to summer. Although nitrate and ammonium in the surface layer were depleted early in the spring, the plankton populations never became extremely N deficient, as indicated by high intracellular amino acid/protein ratios. However, growth rates, estimated from protein/DNA or RNA/DNA ratios, were usually low unless nitrate concentrations were high or had recently been high, as indicated by large intracellular nitrate pools or high nitrate reductase activities. High growth rates were observed during the spring bloom or as a result of the sporadic supply of nitrate to the euphotic zone, which was inferred from measurements of biochemical indicators on several cruises after the spring bloom. The sporadic supply of nitrate could account for the lack of N deficiency in these populations and mask diel periodicity in N utilization. These results demonstrate that biochemical indicators can be easily measured in the field and that variations in indicators such as intracellular amino acid/protein, protein/DNA, RNA/DNA ratios, NR activities and intracellular nitrate concentrations are an aid in understanding plankton dynamics

    Abundance And Vertical Flux Of Pseudo-Nitzschia In The Northern Gulf Of Mexico

    Get PDF
    Many species of the ubiquitous pennate diatom genus Pseudo-nitzschia have recently been discovered to produce domoic acid, a potent neurotoxin which causes Amnesic Shellfish Poisoning (ASP). Pseudo-nitzschia spp. were extremely abundant (up to 10(8) cells l(-1); present in 67% of 2195 samples) from 1990 to 1994 on the Louisiana and Texas, USA, continental shelves and moderately abundant (up to 10(5) cells l(-1); present in 18% of 192 samples) over oyster beds in the Terrebonne Bay estuary in Louisiana in 1993 and 1994. On the shelf there was a strong seasonal cycle with maxima every spring for 5 yr and sometimes in the fall, which were probably related to river flow, water column stability, and nutrient availability. In contrast, in the estuary there was no apparent seasonal cycle in abundance, but the time series of data is relatively short and the environment highly variable. At one site on the shelf, where sediment traps were deployed from spring to fall and sampled at frequent intervals in both 1990 and 1991, approximately 50% of the Pseudo-nitzschia spp. cells present in the water sank into sediment traps. Pseudo-nitzschia spp. were also abundant in surficial sediments. The species of Pseudo-nitzschia present, during this study were not routinely identified with the methods employed. However, toxin-producing P. multiseries has been identified previously from Galveston Bay, Texas, and cells from a bloom on the shelf in June 1993 were identified by scanning electron microscopy as P. pseudodelicatissima, which is sometimes toxic. Although there have been no known outbreaks of ASP in this area, historical data suggests that Pseudo-nitzschia spp,abundance may have increased on the shelf since the 1950s. It is hypothesized that the increase is due to doubling of the nutrient loading from the Mississippi and Atchafalaya rivers and increased eutrophication on the shelf

    Modelling glacial lake outburst flood impacts in the Bolivian Andes

    Get PDF
    The Bolivian Andes have experienced sustained and widespread glacier mass loss in recent decades. Glacier recession has been accompanied by the development of proglacial lakes, which pose a glacial lake outburst flood (GLOF) risk to downstream communities and infrastructure. Previous research has identified three potentially dangerous glacial lakes in the Bolivian Andes, but no attempt has yet been made to model GLOF inundation downstream from these lakes. We generated 2-m resolution DEMs from stereo and tri-stereo SPOT 6/7 satellite images to drive a hydrodynamic model of GLOF flow (HEC-RAS 5.0.3). The model was tested against field observations of a 2009 GLOF from Keara, in the Cordillera Apolobamba, and was shown to reproduce realistic flood depths and inundation. The model was then used to model GLOFs from Pelechuco lake (Cordillera Apolobamba) and Laguna Arkhata and Laguna Glaciar (Cordillera Real). In total, six villages could be affected by GLOFs if all three lakes burst. For sensitivity analysis, we ran the model for three scenarios (pessimistic, intermediate, optimistic), which give a range of ~ 1100 to ~ 2200 people affected by flooding; between ~ 800 and ~ 2100 people could be exposed to floods with a flow depth ≥ 2 m, which could be life threatening and cause a significant damage to infrastructure. We suggest that Laguna Arkhata and Pelechuco lake represent the greatest risk due to the higher numbers of people who live in the potential flow paths, and hence, these two glacial lakes should be a priority for risk managers

    Analysis of Rock Varnish from the Mojave Desert by Handheld Laser-Induced Breakdown Spectroscopy

    Get PDF
    Laser-induced breakdown spectroscopy (LIBS) is a form of optical emission spectroscopy that can be used for the rapid analysis of geological materials in the field under ambient environmental conditions. We describe here the innovative use of handheld LIBS for the in situ analysis of rock varnish. This thinly laminated and compositionally complex veneer forms slowly over time on rock surfaces in dryland regions and is particularly abundant across the Mojave Desert climatic region of east-central California (USA). Following the depth profiling examination of a varnished clast from colluvial gravel in Death Valley in the laboratory, our in situ analysis of rock varnish and visually similar coatings on rock surfaces was undertaken in the Owens and Deep Spring valleys in two contexts, element detection/identification and microchemical mapping. Emission peaks were recognized in the LIBS spectra for the nine elements most abundant in rock varnish—Mn, Fe, Si, Al, Na, Mg, K, Ca and Ba, as well as for H, Li, C, O, Ti, V, Sr and Rb. Focused follow-up laboratory and field studies will help understand rock varnish formation and its utility for weathering and chronological studies

    Volumetric changes of glaciers in the Bolivian Andes between 1986 and 2017

    Get PDF
    Glaciers represent an important water resource for Andean cities and mountain communities. However, a recent study has shown that Bolivian glaciers have shrunk by _43% in area over the last _30 years. If current rates of glacier recession are sustained then there could be potentially important consequences for downstream water supply, especially during the dry season. A first step in assessing the severity of this problem is to estimate the current volume of glacier ice in Bolivia, and how this has changed over recent decades. Here, we use VOLTA (created by James and Carrivick, 2016 – Computers & Geosciences), an ArcGIS tool requiring only a Digital Elevation Model (DEM) and glacier outlines to give a first-order ice thickness estimate and therefore derive volume changes for the entire Bolivian Andes between 1986 and 2017. The VOLTA tool also models bed topography, which we use to make a preliminary assessment of the locations of subglacial overdeepennings, which will become loci for future proglacial lakes capable of generating glacial lake outburst floods (GLOFs) and storing meltwater

    Remote assessment of glacial lake outburst flood risk using multi-criteria decision analysis

    Get PDF
    Glaciers across the world are thinning and receding in response to atmospheric warming. Glaciers tend to erode subglacial basins and deposit eroded materials around their margins as lateral-frontal terminal moraines. Recession into these basins and behind impounding moraines causes meltwater to pond as proglacial and supraglacial lakes. Consequently, there has been a general trend of increasing number and size of these lakes associated with glacier melting in many mountainous regions around the globe, in the last 30 years. Glacial lake outburst floods (GLOFs) then may occur where the glacial lake dam (ice, rock, moraine, or combination thereof) is breached, or overtopped, and thousands of people have lost their lives to such events in the last few decades, especially in the Andes and in the Himalaya. Given the ongoing and arguably increasing risk posed to downstream communities, and infrastructure, there has been a proliferation of GLOF studies, with many seeking to estimate GLOF hazard or risk in specific regions, or to identify ’potentially dangerous glacial lakes’. Given the increased scientific interest in GLOFs, it is timely to evaluate critically the ways in which GLOF risk has been assessed previously, and whether there are improvements that can be made to the ways in which risk assessment is achieved. We argue that, whilst existing GLOF hazard and risk assessments have been extremely valuable they often suffer from a number of key shortcomings that can be addressed by using different techniques as multi-criteria decision analysis and hydraulic modelling borrowed from disciplines like engineering, remote sensing and operations research

    Glacial lake outburst flood risk in the Bolivian Andes

    Get PDF
    Glaciers of the Bolivian Andes have experienced areal shrinkage of _43% in the last three decades, which has been accompanied by the development of proglacial lakes, some of which could generate glacial lake outburst floods (GLOFs). We provide the first attempt to assess GLOF risk in Bolivia, and model potential GLOF inundation. There are _137 proglacial lakes in the Bolivian Andes, 25 of which have population and/or infrastructure downstream.We first developed a GLOF risk assessment strategy using Multi-Criteria Decision Analysis (MCDA) guidelines that could be used remotely and free-of-charge to identify glacial lakes that represent the greatest GLOF risk. This revealed that three lakes posed medium or high risk, and required further analysis. Secondly, we undertook a modelling study of potential GLOF inundation from these three lakes. This involved the generation of a 2m resolution Digital Elevation Model (DEM) from stereo and tri-stereo SPOT 6/7 satellite images; the 2D hydrodynamic model HEC-RAS 5.0.3 was used to model GLOF flow. The model was tested against field observations of a 2009 GLOF from Keara, in the Cordillera Apolobamba, and was shown to reproduce realistic flood depths and inundation. The model was then used to model GLOFs from Pelechuco lake (Cordillera Apolobamba), and Laguna Arkhata and Laguna Glaciar (Cordillera Real). In total, six villages could be affected by GLOFs if all three lakes were to burst. We ran the model for three scenarios (pessimistic, intermediate, optimistic) which give a range of 1589 and 2302 people affected by flooding; between 1107 and 2168 people would be exposed to damaging floods (flow depth _ 2m). We suggest that Laguna Arkhata and Pelechuco lake represent the greatest risk due to the higher numbers of people who live in the potential flood paths, and hence should be a priority for risk managers

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore