126 research outputs found

    Differentiation, Quantification and Identification of Abrin and Abrus precatorius Agglutinin

    Get PDF
    Abrin, the toxic lectin from the rosary pea plant Abrus precatorius, has gained considerable interest in the recent past due to its potential malevolent use. However, reliable and easy-to-use assays for the detection and discrimination of abrin from related plant proteins such as Abrus precatorius agglutinin or the homologous toxin ricin from Ricinus communis are sparse. To address this gap, a panel of highly specific monoclonal antibodies was generated against abrin and the related Abrus precatorius agglutinin. These antibodies were used to establish two sandwich ELISAs to preferentially detect abrin or A. precatorius agglutinin (limit of detection 22 pg/mL for abrin; 35 pg/mL for A. precatorius agglutinin). Furthermore, an abrin-specific lateral flow assay was developed for rapid on-site detection (limit of detection ~1 ng/mL abrin). Assays were validated for complex food, environmental and clinical matrices illustrating broad applicability in different threat scenarios. Additionally, the antibodies turned out to be suitable for immuno-enrichment strategies in combination with mass spectrometry-based approaches for unambiguous identification. Finally, we were able to demonstrate for the first time how the developed assays can be applied to detect, identify and quantify abrin from a clinical sample derived from an attempted suicide case involving A. precatorius.Peer Reviewe

    Development of a Genus-Specific Antigen Capture ELISA for Orthopoxviruses – Target Selection and Optimized Screening

    Get PDF
    Orthopoxvirus species like cowpox, vaccinia and monkeypox virus cause zoonotic infections in humans worldwide. Infections often occur in rural areas lacking proper diagnostic infrastructure as exemplified by monkeypox, which is endemic in Western and Central Africa. While PCR detection requires demanding equipment and is restricted to genome detection, the evidence of virus particles can complement or replace PCR. Therefore, an easily distributable and manageable antigen capture enzyme-linked immunosorbent assay (ELISA) for the detection of orthopoxviruses was developed to facilitate particle detection. By comparing the virus particle binding properties of polyclonal antibodies developed against surface-exposed attachment or fusion proteins, the surface protein A27 was found to be a well-bound, highly immunogenic and exposed target for antibodies aiming at virus particle detection. Subsequently, eight monoclonal anti-A27 antibodies were generated and characterized by peptide epitope mapping and surface plasmon resonance measurements. All antibodies were found to bind with high affinity to two epitopes at the heparin binding site of A27, toward either the N- or C-terminal of the crucial KKEP-segment of A27. Two antibodies recognizing different epitopes were implemented in an antigen capture ELISA. Validation showed robust detection of virus particles from 11 different orthopoxvirus isolates pathogenic to humans, with the exception of MVA, which is apathogenic to humans. Most orthopoxviruses could be detected reliably for viral loads above 1 × 103 PFU/mL. To our knowledge, this is the first solely monoclonal and therefore reproducible antibody-based antigen capture ELISA able to detect all human pathogenic orthopoxviruses including monkeypox virus, except variola virus which was not included. Therefore, the newly developed antibody-based assay represents important progress towards feasible particle detection of this important genus of viruses

    Dynamically stabilized decoherence-free states in non-Markovian open fermionic systems

    Full text link
    Decoherence-free subspaces (DFSs) provide a strategy for protecting the dynamics of an open system from decoherence induced by the system-environment interaction. So far, DFSs have been primarily studied in the framework of Markovian master equations. In this work, we study decoherence-free (DF) states in the general setting of a non-Markovian fermionic environment. We identify the DF states by diagonalizing the non-unitary evolution operator for a two-level fermionic system attached to an electron reservoir. By solving the exact master equation, we show that DF states can be stabilized dynamically.Comment: 11 pages, 3 figures. Any comments are welcom

    Innovative and Highly Sensitive Detection of Clostridium perfringens Enterotoxin Based on Receptor Interaction and Monoclonal Antibodies

    Get PDF
    Clostridium perfringens enterotoxin (CPE) regularly causes food poisoning and antibioticassociated diarrhea; therefore, reliable toxin detection is crucial. To this aim, we explored stationary and mobile strategies to detect CPE either exclusively by monoclonal antibodies (mAbs) or, alternatively, by toxin-enrichment via the cellular receptor of CPE, claudin-4, and mAb detection. Among the newly generated mAbs, we identified nine CPE-specific mAbs targeting five distinct epitopes, among them mAbs recognizing CPE bound to claudin-4 or neutralizing CPE activity in vitro. In surface plasmon resonance experiments, all mAbs and claudin-4 revealed excellent affinities towards CPE, ranging from 0.05 to 2.3 nM. Integrated into sandwich enzyme-linked immunosorbent assays (ELISAs), the most sensitive mAb/mAb and claudin-4/mAb combinations achieved similar detection limits of 0.3 pg/mL and 1.0 pg/mL, respectively, specifically detecting recombinant CPE from spiked feces and native CPE from 30 different C. perfringens culture supernatants. The implementation of mAb- and receptor-based ELISAs into a mobile detection platform enabled the fast detection of CPE, which will be helpful in clinical laboratories to diagnose diarrhea of assumed bacterial origin. In conclusion, we successfully employed an endogenous receptor and novel high affinity mAbs for highly sensitive and specific CPE-detection. These tools will be useful for both basic and applied research.Peer Reviewe

    Pain as a global public health priority

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pain is an enormous problem globally. Estimates suggest that 20% of adults suffer from pain globally and 10% are newly diagnosed with chronic pain each year. Nevertheless, the problem of pain has primarily been regarded as a medical problem, and has been little addressed by the field of public health.</p> <p>Discussion</p> <p>Despite the ubiquity of pain, whether acute, chronic or intermittent, public health scholars and practitioners have not addressed this issue as a public health problem. The importance of viewing pain through a public health lens allows one to understand pain as a multifaceted, interdisciplinary problem for which many of the causes are the social determinants of health. Addressing pain as a global public health issue will also aid in priority setting and formulating public health policy to address this problem, which, like most other chronic non-communicable diseases, is growing both in absolute numbers and in its inequitable distribution across the globe.</p> <p>Summary</p> <p>The prevalence, incidence, and vast social and health consequences of global pain requires that the public health community give due attention to this issue. Doing so will mean that health care providers and public health professionals will have a more comprehensive understanding of pain and the appropriate public health and social policy responses to this problem.</p

    Higher Expression of CCL2, CCL4, CCL5, CCL21, and CXCL8 Chemokines in the Skin Associated with Parasite Density in Canine Visceral Leishmaniasis

    Get PDF
    Several previous studies correlated immunopathological aspects of canine visceral leishmaniasis (CVL) with tissue parasite load and/or the clinical status of the disease. Recently, different aspects of the immune response in Leishmania-infected dogs have been studied, particularly the profile of cytokines in distinct compartments. However, the role of chemokines in disease progression or parasite burdens of the visceralising species represents an important approach for understanding immunopathology in CVL. We found an increase in inflammatory infiltrate, which was mainly composed of mononuclear cells, in the skin of animals presenting severe forms of CVL and high parasite density. Our data also demonstrated that enhanced parasite density is positively correlated with the expression of CCL2, CCL4, CCL5, CCL21, and CXCL8. In contrast, there was a negative correlation between parasite density and CCL24 expression. These findings represent an advance in the knowledge of the involvement of skin inflammatory infiltrates in CVL and the systemic consequences and may contribute to developing a rational strategy for the design of new and more efficient prophylactic tools and immunological therapies against CVL

    Oncoplastic breast consortium recommendations for mastectomy and whole breast reconstruction in the setting of post-mastectomy radiation therapy

    Get PDF
    Aim: Demand for nipple-and skin-sparing mastectomy (NSM/SSM) with immediate breast reconstruction (BR) has increased at the same time as indications for post-mastectomy radiation therapy (PMRT) have broadened. The aim of the Oncoplastic Breast Consortium initiative was to address relevant questions arising with this clinically challenging scenario. Methods: A large global panel of oncologic, oncoplastic and reconstructive breast surgeons, patient advocates and radiation oncologists developed recommendations for clinical practice in an iterative process based on the principles of Delphi methodology. Results: The panel agreed that surgical technique for NSM/SSM should not be formally modified when PMRT is planned with preference for autologous over implant-based BR due to lower risk of long-term complications and support for immediate and delayed-immediate reconstructive approaches. Nevertheless, it was strongly believed that PMRT is not an absolute contraindication for implant-based or other types of BR, but no specific recom-mendations regarding implant positioning, use of mesh or timing were made due to absence of high-quality evidence. The panel endorsed use of patient-reported outcomes in clinical practice. It was acknowledged that the shape and size of reconstructed breasts can hinder radiotherapy planning and attention to details of PMRT techniques is important in determining aesthetic outcomes after immediate BR. Conclusions: The panel endorsed the need for prospective, ideally randomised phase III studies and for surgical and radiation oncology teams to work together for determination of optimal sequencing and techniques for PMRT for each patient in the context of BRPeer reviewe

    Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period

    Get PDF
    We report on observations of the pulsar / Be star binary system PSR J2032+4127 / MT91 213 in the energy range between 100 GeV and 20 TeV with the VERITAS and MAGIC imaging atmospheric Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new, point-like, gamma-ray source is detected, coincident with the location of PSR J2032+4127 / MT91 213. The gamma-ray light curve and spectrum are well-characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar / Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope (XRT) on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130

    The extreme HBL behaviour of Markarian 501 during 2012

    Get PDF
    A multiwavelength campaign was organized to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of \sim0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was \sim3 CU, and the peak of the high-energy spectral component was found to be at \sim2 TeV. This study reports very hard X-ray spectra, and the hardest VHE spectra measured to date for Mrk 501. The fractional variability was found to increase with energy, with the highest variability occurring at VHE, and a significant correlation between the X-ray and VHE bands. The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5 keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency- peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The one-zone synchrotron self-Compton (SSC) scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behaviour seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays
    corecore