22 research outputs found

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk

    Get PDF
    Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    High Level Class II trans

    No full text

    BIVM (basic, immunoglobulin-like variable motif-containing) gene, transcriptional products, and uses thereof

    Get PDF
    The subject invention provides polynucleotide sequences, designated BIVM, and transcriptional/translational products obtained from the polynucleotide sequences of the invention. The subject invention also provides polynucleotide and polypeptide sequences provided by SEQ ID NOs:1–28. Also provided are methods of detecting the presence of BIVM nucleic acids or polypeptides in samples suspected of containing BIVM genes, BIVM transcriptional products, or BIVM translational products. These methods are also useful for the detection of BIVM orthologs. Other embodiments provide polypeptide and/or nucleic acid vaccines for the induction of an immune response to in an individual. Kits for detecting the presence of BIVM genes, orthologs thereof, BIVM polypeptides, or BIVM transcriptional products are also provided

    BIVM (basic, immunoglobulin-like variable motif-containing) gene, transcriptional products, and uses thereof

    Get PDF
    The subject invention provides polynucleotide sequences, designated BIVM, and transcriptional/translational products obtained from the polynucleotide sequences of the invention. The subject invention also provides polynucleotide and polypeptide sequences provided by SEQ ID NOs:1-28. Also provided are methods of detecting the presence of BIVM nucleic acids or polypeptides in samples suspected of containing BIVM genes, BIVM transcriptional products, or BIVM translational products. These methods are also useful for the detection of BIVM orthologs. Other embodiments provide polypeptide and/or nucleic acid vaccines for the induction of an immune response to in an individual. Kits for detecting the presence of BIVM genes, orthologs thereof, BIVM polypeptides, or BIVM transcriptional products are also provided

    Development and Characterization of Anti-Nitr9 Antibodies

    No full text
    The novel immune-type receptors (NITRs), which have been described in numerous bony fish species, are encoded by multigene families of inhibitory and activating receptors and are predicted to be functional orthologs to the mammalian natural killer cell receptors (NKRs). Within the zebrafish NITR family, nitr9 is the only gene predicted to encode an activating receptor. However, alternative RNA splicing generates three distinct nitr9 transcripts, each of which encodes a different isoform. Although nitr9 transcripts have been detected in zebrafish lymphocytes, the specific hematopoietic lineage(s) that expresses Nitr9 remains to be determined. In an effort to better understand the role of NITRs in zebrafish immunity, anti-Nitr9 monoclonal antibodies were generated and evaluated for the ability to recognize the three Nitr9 isoforms. The application of these antibodies to flow cytometry should prove to be useful for identifying the specific lymphocyte lineages that express Nitr9 and may permit the isolation of Nitr9-expressing cells that can be directly assessed for cytotoxic (e.g., NK) function

    Cardiovascular mortality among liver transplant recipients with nonalcoholic steatohepatitis in the United States—a retrospective study

    No full text
    Nonalcoholic steatohepatitis (NASH) has become an increasingly important indication for liver transplantation (LT), and there has been a particular concern of excessive cardiovascular-related mortality in this group. Using the United Network for Organ Sharing-Standard Transplant Analysis and Research (UNOS STAR) dataset, we reviewed data on 56,995 adult transplants (January 2002 through June 2013). A total of 3,170 NASH liver-only recipients were identified and were matched with 3,012 non-NASH HCV+ and 3,159 non-NASH HCV− controls [matched 1:1 based on gender, age at LT (±3 years), and MELD score (±3)]. Cox regression analysis revealed significantly lower hazard of all-cause (HR 0.669; P \u3c 0.0001) and cardiovascular-related mortality (HR 0.648; P \u3c 0.0001) in the NASH compared to the non-NASH group after adjusting for diabetes, BMI, and race. Relative to the non-NASH HCV-positive group, NASH group has lower hazard of all-cause (HR 0.539; P \u3c 0.0001) and cardiovascular-related mortality (HR 0.491; P \u3c 0001). A lower hazard of all-cause mortality (HR 0.844; P = 0.0094) was also observed in NASH patients compared to non-NASH HCV-negative group, but cardiovascular mortality was similar (HR 0.892; P = 0.3276). LT recipients with NASH have either lower or similar risk of all-cause and cardiovascular-related mortality compared to its non-NASH counterparts after adjusting for diabetes, BMI, and race
    corecore