519 research outputs found

    Global oceanic emission of ammonia: constraints from seawater and atmospheric observations

    Get PDF
    Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a−1, much lower than current literature values (7–23 TgN a−1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a−1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2–5 TgN a−1, comparable in magnitude to other natural sources from open fires and soils

    The impact of ocean acidification on the functional morphology of foraminifera

    Get PDF
    This work was supported by the NERC UK Ocean Acidification Research Programme grant NE/H017445/1. WENA acknowledges NERC support (NE/G018502/1). DMP received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Culturing experiments were performed on sediment samples from the Ythan Estuary, N. E. Scotland, to assess the impacts of ocean acidification on test surface ornamentation in the benthic foraminifer Haynesina germanica. Specimens were cultured for 36 weeks at either 380, 750 or 1000 ppm atmospheric CO2. Analysis of the test surface using SEM imaging reveals sensitivity of functionally important ornamentation associated with feeding to changing seawater CO2 levels. Specimens incubated at high CO2 levels displayed evidence of shell dissolution, a significant reduction and deformation of ornamentation. It is clear that these calcifying organisms are likely to be vulnerable to ocean acidification. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism’s survival and fitness.Publisher PDFPeer reviewe

    Transitioning global change experiments on Southern Ocean phytoplankton from lab to field settings: insights and challenges

    Get PDF
    The influence of global change on Southern Ocean productivity will have major ramifications for future management of polar life. A prior laboratory study investigated the response of a batch-cultured subantarctic diatom to projected change simulating conditions for 2100 (increased temperature/CO2/irradiance/iron; decreased macronutrients), showed a twofold higher chlorophyll-derived growth rate driven mainly by temperature and iron. We translated this design to the field to understand the phytoplankton community response, within a subantarctic foodweb, to 2100 conditions. A 7-d shipboard study utilizing 250-liter mesocosms was conducted in March 2016. The outcome mirrors lab-culture experiments, yielding twofold higher chlorophyll in the 2100 treatment relative to the control. This trend was also evident for intrinsic metrics including nutrient depletion. Unlike the lab-culture study, photosynthetic competence revealed a transient effect in the 2100 mesocosm, peaking on day 3 then declining. Metaproteomics revealed significant differences in protein profiles between treatments by day 7. The control proteome was enriched for photosynthetic processes (c.f. 2100) and exhibited iron-limitation signatures; the 2100 proteome exposed a shift in cellular energy production. Our findings of enhanced phytoplankton growth are comparable to model simulations, but underlying mechanisms (temperature, iron, and/or light) differ between experiments and models. Batch-culture approaches hinder cross-comparison of mesocosm findings to model simulations (the latter are akin to “continuous-culture chemostats”). However, chemostat techniques are problematic to use with mesocosms, as mesozooplankton will evade seawater flow-through, thereby accumulating. Thus, laboratory, field, and modeling approaches reveal challenges to be addressed to better understand how global change will alter Southern Ocean productivity

    Will ocean acidification affect marine microbes?

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1-7, doi:10.1038/ismej.2010.79.The pH of the surface ocean is changing as a result of increases in atmospheric carbon dioxide (CO2) and there are concerns about potential impacts of lower pH and associated alterations in seawater carbonate chemistry on the biogeochemical processes in the ocean. However, it is important to place these changes within the context of pH in the present day ocean, which is not constant; it varies systematically with season, depth and along productivity gradients. Yet this natural variability in pH has rarely been considered in assessments of the effect of ocean acidification on marine microbes. Surface pH can change as a consequence of microbial utilisation and production of carbon dioxide, and to a lesser extent other microbiallymediated processes such as nitrification. Useful comparisons can be made with microbes in other aquatic environments that readily accommodate very large and rapid pH change. For example, in many freshwater lakes, pH changes that are orders of magnitude greater than those projected for the 22nd century oceans can occur over periods of hours. Marine and freshwater assemblages have always experienced variable pH conditions. Therefore, an appropriate null hypothesis may be, until evidence is obtained to the contrary, that major biogeochemical processes in the oceans other than calcification will not be fundamentally different under future higher CO2 / lower pH conditions.Funding from the Gordon and Betty Moore Foundation, and logistical support from the Plymouth Marine Laboratory and the Center for Microbial Oceanography: Research and Education (National Science Foundation grant EF-0424599) are gratefully acknowledged

    Inconsistent strategies to spin up models in CMIP5: Implications for ocean biogeochemical model performance assessment

    Get PDF
    This is the final version of the article. Available from EGU via the DOI in this record.During the fifth phase of the Coupled Model Intercomparison Project (CMIP5) substantial efforts were made to systematically assess the skill of Earth system models. One goal was to check how realistically representative marine biogeochemical tracer distributions could be reproduced by models. In routine assessments model historical hindcasts were compared with available modern biogeochemical observations. However, these assessments considered neither how close modeled biogeochemical reservoirs were to equilibrium nor the sensitivity of model performance to initial conditions or to the spin-up protocols. Here, we explore how the large diversity in spin-up protocols used for marine biogeochemistry in CMIP5 Earth system models (ESMs) contributes to model-to-model differences in the simulated fields. We take advantage of a 500-year spin-up simulation of IPSL-CM5A-LR to quantify the influence of the spin-up protocol on model ability to reproduce relevant data fields. Amplification of biases in selected biogeochemical fields (O2, NO3, Alk-DIC) is assessed as a function of spin-up duration. We demonstrate that a relationship between spin-up duration and assessment metrics emerges from our model results and holds when confronted with a larger ensemble of CMIP5 models. This shows that drift has implications for performance assessment in addition to possibly aliasing estimates of climate change impact. Our study suggests that differences in spin-up protocols could explain a substantial part of model disparities, constituting a source of model-to-model uncertainty. This requires more attention in future model intercomparison exercises in order to provide quantitatively more correct ESM results on marine biogeochemistry and carbon cycle feedbacks.We sincerely thank I. Kriest, F. Joos, the anonymous reviewer and A. Yool for their useful comments on this paper. This work was supported by H2020 project CRESCENDO “Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination and Outreach”, which received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 641816 and by the EU FP7 project CARBOCHANGE “Changes in carbon uptake and emissions by oceans in a changing climate” which received funding from the European community’s Seventh Framework Programme under grant agreement no. 264879. Supercomputing time was provided by GENCI (Grand Equipement National de Calcul Intensif) at CCRT (Centre de Calcul Recherche et Technologie), allocation 016178. Finally, we are grateful to the ESGF project which makes data available for all the community. Roland Séférian is grateful to Aurélien Ribes for his kind advices on statistics. Jerry Tjiputra acknowledges ORGANIC project (239965/F20) funded by the Research Council of Norway. Christoph Heinze and Jerry Tjiputra are grateful for support through project EVA – Earth system modelling of climate variations in the Anthropocene (229771/E10) funded by the Research Council of Norway, as well as CPU-time and mass storage provided through NOTUR project NN2345K as well as NorStore project NS2345K. Keith Lindsay and Scott C. Doney acknowledge support from the National Science Foundation

    Decadal changes of the Western Arabian sea ecosystem

    Get PDF
    Historical data from oceanographic expeditions and remotely sensed data on outgoing longwave radiation, temperature, wind speed and ocean color in the western Arabian Sea (1950–2010) were used to investigate decadal trends in the physical and biochemical properties of the upper 300 m. 72 % of the 29,043 vertical profiles retrieved originated from USA and UK expeditions. Increasing outgoing longwave radiation, surface air temperatures and sea surface temperature were identified on decadal timescales. These were well correlated with decreasing wind speeds associated with a reduced Siberian High atmospheric anomaly. Shoaling of the oxycline and nitracline was observed as well as acidification of the upper 300 m. These physical and chemical changes were accompanied by declining chlorophyll-a concentrations, vertical macrofaunal habitat compression, declining sardine landings and an increase of fish kill incidents along the Omani coast

    Effect of Carbonate Chemistry Alteration on the Early Embryonic Development of the Pacific Oyster (Crassostrea gigas)

    Get PDF
    Ocean acidification, due to anthropogenic CO2 absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions

    Increased Local Retention of Reef Coral Larvae as a Result of Ocean Warming

    Get PDF
    Climate change will alter many aspects of the ecology of organisms, including dispersal patterns and population connectivity. Understanding these changes is essential to predict future species distributions, estimate potential for adaptation, and design effective networks of protected areas. In marine environments, dispersal is often accomplished by larvae. At higher temperatures, larvae develop faster, but suffer higher mortality, making the effect of temperature on dispersal difficult to predict. Here, we experimentally calibrate the effect of temperature on larval survival and settlement in a dynamic model of coral dispersal. Our findings imply that most reefs globally will experience several-fold increases in local retention of larvae due to ocean warming. This increase will be particularly pronounced for reefs with mean water residence times comparable to the time required for species to become competent to settle. Higher local retention rates strengthen the link between abundance and recruitment at the reef scale, suggesting that populations will be more responsive to local conservation actions. Higher rates of local retention and mortality will weaken connectivity between populations, and thus potentially retard recovery following severe disturbances that substantially deplete local populations. Conversely, on isolated reefs that are dependent on replenishment from local broodstock, increases in local retention may hasten recovery

    Toward an integrated observing system for ocean carbon and biogeochemistry at a time of change

    Full text link
    peer reviewedOcean biogeochemical cycles are currently undergoing fundamental changes – largely as a consequence of the addition of greenhouse gases to the atmosphere. The oceans are getting warmer, and their pH and oxygen levels are decreasing. Further changes may arise as a consequence of the perturbation of the global nitrogen cycle, leading to higher inputs of fixed nitrogen to the ocean by rivers and enhanced deposition of nitrogen to the surface ocean. These biogeochemical changes plus the concomitant changes in ocean circulation will have profound effects on some of the ocean’s key services, i.e. its capability to mitigate climate change by removing anthropogenic CO2 from the atmosphere, and its provision of important ecosystem services such as food and biodiversity. Documenting, understanding, and predicting these biogeochemical changes require a concerted and sustained observational effort that includes both the continuation of well-tested approaches and the development and implementation of novel systems. Of particular importance for the first set of approaches are the sustaining and extension of (i) a surface ocean volunteer ocean ship-based observing system primarily focusing on the determination of the air-sea exchange of CO2 and upper ocean changes in carbonate chemistry, of (ii) an interior ocean research-ship based system focusing on large-scale interior changes of the ocean’s biogeochemistry (carbon, oxygen, nutrients, etc), and of (iii) ship-based and moored time-series observations at key sites, including the coastal ocean. Of particular importance for the second set of approaches are (i) the accelerated improvement, development and implementation of new observational elements on the Argo array (especially oxygen, but also nutrient and bio-optical sensors), and (ii) the development, testing, and deployment of novel sensors for the ocean’s carbon system. Concerted synthesis efforts involving also novel approaches for merging observations with biogeochemical models will ensure that these observational elements realize their synergistic potential

    Responses of marine benthic microalgae to elevated CO<inf>2</inf>

    Get PDF
    Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. © 2011 Springer-Verlag
    corecore