29 research outputs found

    On the reliability of composite analysis:an example of wet summers in North China

    Get PDF
    The validity of composite analysis is seldom discussed despite the fact that it can yield conflicting results. Our study confirms its validity by adding a reliability analysis to the classical composite analysis. Based on the signals extracted from composite analysis, 10 of the 14 wet summers in North China (1951–2020) can be “predicted” retrospectively. This study suggested the cyclonic anomaly over Mongolia at 500- and 850-hPa is closely associated with wet summers in North China. Interestingly, we found the most profound effects come from the Southern Hemisphere, with high confidence levels and large magnitude of the composite anomalies. These composite results are further cross-validated. We show that, based on the signals extracted from composite analysis, previously unseen wet summers in North China can be predicted with the mean absolute percentage error (MAPE) around 6%.</p

    Changing Climate and Overgrazing Are Decimating Mongolian Steppes

    No full text
    Satellite observations identify the Mongolian steppes as a hotspot of global biomass reduction, the extent of which is comparable with tropical rainforest deforestation. To conserve or restore these grasslands, the relative contributions of climate and human activities to degradation need to be understood. Here we use a recently developed 21-year (1988-2008) record of satellite based vegetation optical depth (VOD, a proxy for vegetation water content and aboveground biomass), to show that nearly all steppe grasslands in Mongolia experienced significant decreases in VOD. Approximately 60% of the VOD declines can be directly explained by variations in rainfall and surface temperature. After removing these climate induced influences, a significant decreasing trend still persists in the VOD residuals across regions of Mongolia. Correlations in spatial patterns and temporal trends suggest that a marked increase in goat density with associated grazing pressures and wild fires are the most likely non-climatic factors behind grassland degradation.Funding for this research was through a University of New South Wales International Postgraduate Award and CSIRO Water for a Healthy Country Flagship Program scholarship. The data used in Figure 3b were supported through the Research Institute for Humanity and Nature (project number D-04). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems

    Get PDF
    Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season

    The consolidated European synthesis of CO2emissions and removals for the European Union and United Kingdom : 1990-2018

    Get PDF
    Acknowledgements FAOSTAT statistics are produced and disseminated with the support of its member countries to the FAO regular budget. Philippe Ciais acknowledges the support of the European Research Council Synergy project SyG-2013-610028 IMBALANCE-P and from the ANR CLAND Convergence Institute. We acknowledge the work of the entire EDGAR group (Marilena Muntean, Diego Guizzardi, Edwin Schaaf and Jos Olivier). We acknowledge Stephen Sitch and the authors of the DGVMs TRENDY v7 ensemble models for providing us with the data. Financial support This research has been supported by the H2020 European Research Council (grant no. 776810).Peer reviewedPublisher PD

    The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom : 1990-2017

    Get PDF
    Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27 C UK). We integrate recent emission inventory data, ecosystem process-based model results and inverse modeling estimates over the period 1990-2017. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported to the UN climate convention UNFCCC secretariat in 2019. For uncertainties, we used for NGHGIs the standard deviation obtained by varying parameters of inventory calculations, reported by the member states (MSs) following the recommendations of the IPCC Guidelines. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model-specific uncertainties when reported. In comparing NGHGIs with other approaches, a key source of bias is the activities included, e.g., anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011-2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 TgCH(4) yr (-1) (EDGAR v5.0) and 19.0 TgCH(4) yr(-1) (GAINS), consistent with the NGHGI estimates of 18.9 +/- 1.7 TgCH(4) yr(-1). The estimates of TD total inversions give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher-resolution atmospheric transport models give a mean emission of 28.8 TgCH(4) yr(-1). Coarser-resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 TgCH(4) yr(-1)) and surface network (24.4 TgCH(4) yr (-1)). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions, and geological sources together account for the gap between NGHGIs and inversions and account for 5.2 TgCH(4) yr(-1). For N2O emissions, over the 2011-2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 TgN(2)Oyr(-1), respectively, agreeing with the NGHGI data (0.9 0.6 TgN(2)Oyr(-1)). Over the same period, the average of the three total TD global and regional inversions was 1.3 +/- 0.4 and 1.3 +/- 0.1 TgN(2)Oyr(-1), respectively. The TD and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at the EU CUK scale and at the national scale.Peer reviewe

    Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems

    Get PDF
    Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.Peer reviewe

    The uncertain climate footprint of wetlands under human pressure

    Get PDF
    Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems,making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the “cost” of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse– response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange

    Biogeochemical Cycles and Climate

    No full text
    Changing concentrations of greenhouse gasses are key to our changing climate. Biogochemical Cycles and Climate examines the interaction of the main biogeochemical cycles of the earth with the physics of climate from the perspective of the earth as an integrated system. Biogeochemical cycles play a fundamental role in the Earth's system - they describe the movement of matter and transfer of energy around the planet. This text aims to answer some fundamental questions. How have the cycles of key nutrients, such as carbon, nitrogen, phosphorous, and water changed, both in the geological past and more recently through the impact of humans on the Earth System? How do these cycles interact with each other and affect the physical properties of climate? How can we use this knowledge to mitigate some of the impacts of changing biogeochemistry on climate, and the Earth's habitability and resilience? Understanding the complex interactions of biogeochemistry with the Earth's climate is crucial for understanding past and current changes in climate and above all, for the future sustainable management of our planet. The book: Integrates physics and biogeochemistry, to provide a better understanding of climate change Examines current changes through a long term, Earth science and geological perspective Explains the essential physics of the atmosphere, ocean and radiation, to help deepen the reader's understanding of climate physics Provides an up to date discussion of carbon and other cycles Discusses mitigation of climate chang

    Changing Climate and Overgrazaing Are Decimating Mongolian Steppes

    Get PDF
    Satellite observations identify the Mongolian steppes as a hotspot of global biomass reduction, the extent of which is comparable with tropical rainforest deforestation. To conserve or restore these grasslands, the relative contributions of climate and human activities to degradation need to be understood. Here we use a recently developed 21-year (1988-2008) record of satellite based vegetation optical depth (VOD, a proxy for vegetation water content and aboveground biomass), to show that nearly all steppe grasslands in Mongolia experienced significant decreases in VOD. Approximately 60% of the VOD declines can be directly explained by variations in rainfall and surface temperature. After removing these climate induced influences, a significant decreasing trend still persists in the VOD residuals across regions of Mongolia. Correlations in spatial patterns and temporal trends suggest that a marked increase in goat density with associated grazing pressures and wild fires are the most likely non-climatic factors behind grassland degradation. © 2013 Liu et al
    corecore