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A B S T R A C T   

The validity of composite analysis is seldom discussed despite the fact that it can yield conflicting results. Our 
study confirms its validity by adding a reliability analysis to the classical composite analysis. Based on the signals 
extracted from composite analysis, 10 of the 14 wet summers in North China (1951–2020) can be “predicted” 
retrospectively. This study suggested the cyclonic anomaly over Mongolia at 500- and 850-hPa is closely asso-
ciated with wet summers in North China. Interestingly, we found the most profound effects come from the 
Southern Hemisphere, with high confidence levels and large magnitude of the composite anomalies. These 
composite results are further cross-validated. We show that, based on the signals extracted from composite 
analysis, previously unseen wet summers in North China can be predicted with the mean absolute percentage 
error (MAPE) around 6%.   

1. Introduction 

Composite analysis, sometimes also referred to as epoch analysis, is 
widely used to detect relations between climate phenomenon and po-
tential causal factors. Composite analysis is considered as simple in the 
sense that only two basic steps are required to form a composite analysis 
(von Storch and Zwiers, 1999): form sets (Θ) of the events and calculate 
the composite mean values (e.g. Prein et al., 2017). In practice, the 
second step is often modified by calculating either the composite 
anomaly (e.g. Ullah et al., 2021) or the composite difference (e.g. Nan 
et al., 2021). Since the signals of physical mechanisms leading to at-
mospheric phenomena do exist within the historical data, the accumu-
lation and averaging of successive events can amplify these signals while 
the stochastic background noise can be substantially reduced (Laken and 
Calogović, 2013). Composite analysis is thus a simple and powerful 
approach to detect how a low-amplitude signal finds its expression in 
other variables. 

While composite approach appears simple and powerful in theory, in 
practice, inconsistent results can be produced by composite studies. For 
example, Gao et al. (2014) using composite analysis found that a 
stronger western North Pacific subtropical high (WNPSH) brings more 
rainfall to North China. In contrast, Hao et al. (2010) and Feng and Hu 

(2004) found that North China summer rainfall variation is not affected 
to any significant extent by the WNPSH. Zhao et al. (2010) even found a 
more westward (i.e. stronger) WNPSH is related to shorter rainy season 
and thus less summer rainfall over North China. Inconsistent results can 
be found in other applications of this approach (e.g. Laken and Calo-
gović, 2013). 

The key question is: to what extent can we still use composite anal-
ysis? In the present paper we will first apply a traditional composite 
analysis. Importantly, a post-processing approach is proposed to 
demonstrate the reliability of the composite results, using the example of 
wet summers in North China, a highly stressed area of ground water (Qiu 
et al., 2016). North China (35–40◦N, 110–120◦E, Fig. 1) is one of the 
most densely populated and most intensively irrigated regions in the 
world (Liu et al., 2015). The huge population, agricultural irrigation, 
and industrial development demand a much larger amount of water 
resources than that which can be supplied by the regional rainfall and 
river runoff. Similar to many other regions in the world (Pimentel et al., 
2004), North China mines groundwater to meet the imbalance, but 
much heavier, at a speed far exceeding the recharge rate (Qiu et al., 
2016; Huang and Pang, 2013). 

Precipitation is the direct natural water supply, which recharges 
groundwater and relieves the environmental stress. In North China, a 

* Corresponding author at: School of Geographical Science, Qinghai Normal University, Xining 810008, China. 
E-mail address: lintao_li@icloud.com (L. Li).  

Contents lists available at ScienceDirect 

Atmospheric Research 

journal homepage: www.elsevier.com/locate/atmosres 

https://doi.org/10.1016/j.atmosres.2023.106881 
Received 10 August 2022; Received in revised form 27 February 2023; Accepted 14 June 2023   

mailto:lintao_li@icloud.com
www.sciencedirect.com/science/journal/01698095
https://www.elsevier.com/locate/atmosres
https://doi.org/10.1016/j.atmosres.2023.106881
https://doi.org/10.1016/j.atmosres.2023.106881
https://doi.org/10.1016/j.atmosres.2023.106881
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosres.2023.106881&domain=pdf


Atmospheric Research 292 (2023) 106881

2

wet summer (June, July, August, JJA) is very important for groundwater 
recharge since 69% of its annual precipitation is concentrated in sum-
mer (Qian and Zhou, 2014). In this paper, we are interested in climate 
conditions/patterns favourable to large summer precipitation in North 
China. 

Numerous studies have documented the linkages between precipi-
tation over North China and various climate factors during the past 
decades (e.g. Ouyang et al., 2014). Using long precipitation data series 
from Dai et al. (1997), Qian and Zhou (2014) associated multidecadal 
variability of North China aridity with the Pacific decadal oscillation 
(PDO) phase changes. Using composite analysis, they further found that 
under the PDO+ phase, a wave train similar to the Pacific-Japan pattern- 
like teleconnection suppressed the northward monsoon flow and resul-
ted in a deficit of summer rainfall in North China. Using a similar pre-
cipitation dataset, however, Feng and Hu (2004) demonstrated that the 
Pacific-Japan teleconnection pattern has a rather weak effect on rainfall 
in North China. On interannual time scales, many studies associated the 
variation of summer rainfall in North China with the El Niño-Southern 
Oscillation (ENSO). They found that summer rainfall in North China is 
suppressed when El Niño is in the developing and mature phase while it 
is stimulated when an El Niño is fading (e.g. Zhang et al., 1999; Feng and 
Hu, 2004). A considerable amount of studies attributed the summer 
rainfall variation in North China to the interannual variation of the East 
Asian summer monsoon (EASM, e.g. Ding, 1994) while other studies 
found the Indian summer monsoon plays a role (e.g. Zhang et al., 1999; 
Feng and Hu, 2004). However the mechanisms responsible for the 
variation of both monsoon systems remain in debate (Zhao-S et al., 
2015; Turner and Annamalai, 2012; Wu et al., 2012; Boos and Kuang, 
2013; He et al., 2015). These factors of course do not operate in 

isolation, but interact in intricate connections across the globe (Zahn, 
2003). These ocean-atmosphere teleconnections influence rainfall 
indirectly, and the signals of physical mechanisms leading to the rainfall 
variation are weak compared to their background noise. 

Associations between atmospheric circulation and precipitation in 
North China have attracted much attention in previous studies. At the 
upper-level of the atmosphere, it is known that the East Asian westerly 
jet (EAJ) has a profound effect on precipitation in North China (Liang 
and Wang, 1998; Zhao-G et al., 2015; Qu and Huang, 2012). Ding et al. 
(2008) documented that the weakening of the tropical upper-level 
easterly jet (TEJ) contributed to the weakening of the Asian summer 
monsoon system and subsequently to the dry trend of the summer 
rainfall in North China. Yu et al. (2004) attributed the increased 
droughts in North China to the summer cooling at the upper troposphere 
over extra-tropical East Asia. At the middle-level of the atmosphere, the 
WNPSH is widely believed to be one of the key influencing factors of the 
EASM and subsequently the summer rainfall in North China (Li et al., 
2016; Zhu et al., 2011; Gao et al., 2014). Meanwhile, the cyclonic 
anomaly over Mongolian area, which is induced by warmer air tem-
perature anomaly, is emphasized by previous studies as important to wet 
summers in North China (Hao et al., 2010; Ding et al., 2008). Atmo-
spheric circulation at the lower-level is generally believed to be the 
reflection and result of the aforementioned factors (Ding et al., 2008). It 
is also closely related to the water vapour supply for North China (Hao 
et al., 2010). 

The prime motivation behind this work is to evaluate and show the 
reliability of composite analysis. To do so, a new post-processing method 
is developed in Section 4. This is illustrated using an example with 
practical importance, namely wet summers in North China. The classical 

Fig. 1. (a) The domain of North China in this study. The 58 national meteorological stations within North China are illustrated by the dots. (b) Time series of summer 
(June, July, and August, JJA) rainfall anomalies (mm/day) averaged from the 58 stations. The 14 wet summers are identified by purple dots. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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composite analysis on the features favouring large summer precipitation 
in North China are identified and discussed in Section 3. Section 2 de-
scribes the data sources and methods used in the present study. A 
summary and some discussions are given in Section 5. 

2. Data and methods 

2.1. Data and target domain 

The National Centers for Environmental Prediction-National Center 
for Atmospheric Research (NCEP/NCAR) reanalysis products (Kalnay 
et al., 1996), including the geopotential height (GPH), air temperature, 
and wind fields at pressure levels of 850, 500, and 200 hPa are used for 
the composite analysis and reliability analysis. The NCEP/NCAR data 
sets used in this study are provided by the Physical Sciences Laboratory 
(PSL) in National Oceanic and Atmospheric administration (NOAA, htt 
ps://psl.noaa.gov/). All the reanalysis data sets are at a 2.5◦ latitude 
× 2.5◦ longitude resolution. The data for SST is from the NOAA 
Extended Reconstructed SST V5 (ERSST5, Huang et al., 2017), at a 2.0◦

latitude × 2.0◦ longitude resolution. Monthly accumulated precipitation 
data from 58 national meteorological stations within North China 
(Fig. 1a) are used for wet summer identification and for the calculation 
of reversibility in Section 4. The station data set is provided by the China 
Meteorological Administration (http://data.cma.cn/). All the datasets 
used in this study are from January 1951 to December 2020, which is 
mainly determined by the availability of the station precipitation data 
set. 

We define North China as the area within 35–40◦N and 110–120◦E 
for the present study (Fig. 1a). The coordinates are “round” numbers, 
which fit the most stressed area of groundwater provided by Qiu et al. 
(2016). There is a consensus that a significant decreasing trend can be 
found for summer precipitation in North China from 1960s to the 
beginning of 2010s (e.g. Ding et al., 2008; Hao et al., 2010). While North 
China has noticeable wet summers in recent years, according to the 58 
national station observations, most wet summers are still concentrated 
in 1951–1977 (Fig. 1b). 

2.2. Composite analysis 

It is necessary to define ‘wet summer’ for the present study. As dis-
cussed before, we are interested in large summer (JJA) precipitation in 
North China. Fig. 1b shows time series for precipitation anomalies in 
summer, based on data from the national meteorological stations shown 
in Fig. 1a. The 14 summers with largest precipitation amount (top 20%) 
are highlighted by purple dots and are hereafter referred to as wet 
summers. 

The typical states (VΘ) of wet summer can now be reconstructed by 
calculating the composite mean values of the 14 wet summers. The 
statistical significance is then determined by a two-tailed Student's t-test. 
By subtracting the mean climate state (Vcli) from the composite mean 
(Vcom), we get the composite anomaly values (Vano). The base period of 
1951–2020 is used for calculating the mean climate state. 

2.3. The notion of reversibility 

As noted, the biggest advantage of composite analysis is that, by 
accumulating and averaging of a succession of selected events, the sig-
nals of the physical mechanisms driving a particular phenomenon can be 
amplified. Intuitively, if the signals are captured appropriately by the 
sets (Θ) of the selected events, most of the events (i.e. wet summers in 
North China) should be retrospectively predictable based on the 
captured signals. This is what we call “reversibility”, similar to Boschat 
et al. (2016). In the statement below, the terminology “predict” actually 
means “predict retrospectively”, unless otherwise noted. 

Before introducing our new method to quantify the reliability, we 
give exact definitions of key terms used in this study. In the composite 

anomaly figure for each interested variable, regions where the statistical 
significance exceeds a particular confidence level are either shaded 
(Fig. 2) or contoured (e.g. Fig. 3 a, c). These regions are named as key 
regions in the sense that the composite anomaly values within the key 
regions occur more often in wet summers than they do climatologically. 
The sign and magnitude of the regional mean composite anomaly value 
within a key region is named as key composite feature of the corre-
sponding region or key feature in short. All the key features together in a 
particular composite anomaly figure for a certain variable build up the 
key composite features of the variable, or simply composite features. 
The composite features of all the interested variables define a composite 
scenario, which contains the accumulated signals of the physical 
mechanisms driving a particular phenomenon (e.g. the wet summers in 
North China). 

In order to “predict” whether a phenomenon occurs, the term sce-
nario similarity is defined. The steps of calculating scenario similarity 
proceed as follows. First, for each key region, we consider whether a 
score of zero or one should be assigned according to: 

score =

⎧
⎨

⎩

1, if A > 0andB > αA
1, if A < 0andB < αA
0, otherwise

(1)  

where A is the regional mean of the composite anomaly value, B is the 
mean anomaly value for a particular variable in a particular year within 
the same region as A, and α is the threshold value. It can be set to be 
between − 1 and 1 (negative to positive correlation). In this study, we are 
only interested in α values between 0 and 1, with bins of 0.1 width. 

Second, adding scores of all the identified key regions for all the 
interested variables derives the total score (s) for a particular year. 

Third, the scenario similarity is defined as: 

s
N
× 100% (2)  

where s is the total score of a particular year, N is the number of all the 
key regions in the composite scenario. N is the largest score that the 
scenario of a particular summer can be assigned, in which case the 
scenario similarity equals 1. Therefore, N is effectively the potential full 
score. 

The scenario similarity quantitatively describes the similarity be-
tween the climate signals captured by composite analysis and the signals 
of a particular summer, not only the similarity of magnitude, but also the 
similarity of spatial distribution. When the scenario similarity is high, it 
indicates that the signals of the physical mechanisms driving wet sum-
mers in North China are strong in a particular summer. Consequently, 
more summer rainfall in North China is expected in that summer. 

The reversibility can be evaluated qualitatively by calculating the 
linear relationship between the summer precipitation anomalies and the 
scenario similarities (i.e. the signal strength of the physical mechanisms 
driving wet summer in North China). When the correlation coefficient is 
relatively large and the linear relationship is statistically significant, we 
can qualitatively say that the reversibility is existed and the corre-
sponding composite analysis is therefore reliable. 

The reversibility can further be evaluated quantitatively by assessing 
the accuracy of the “predicted” summer rainfall based on the scenario 
similarity. The ideal state is that a summer with the highest scenario 
similarity value has the largest amount of observed rainfall; the second 
scenario similarity value then corresponds to the second largest amount 
of rainfall, and so forth. In practice however, the ideal state does not 
exist. Therefore, we apply the root-mean-square (RMS) operation to the 
queue number errors between the predicted and the observed summer 
rainfall, with a smaller RMS value corresponding to higher prediction 
accuracy. We consider queue number here because return period or 
frequency is commonly used to understand (extreme) climate events (e. 
g. Read and Vogel, 2015; Mallakpour and Villarini, 2015). Based on the 
procedures we introduced here, other aspects (e.g. magnitude) of events 
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Fig. 2. Composite anomalies of geopotential height (GPH) and winds at (a) 200 hPa, (b) 500 hPa, (c) 850 hPa. The base period of 1951–2020 is used for calculating 
the mean climate state. Shadings denote grids where significance levels (p-value) of zonal wind anomalies are at 10, 5, and 1%. L and H denote the location of the 
cyclonic and anticyclonic anomalies, respectively. 
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and prediction measurements beside the RMS operation (e.g. Kutner 
et al., 2005; Hyndman and Koehler, 2006) can be easily adapted. 

2.4. Cross-validation and sensitivity analysis 

While reversibility analysis shows the reliability of composite anal-
ysis, one may want to simply know whether signals extracted by com-
posite analysis can predict previously unseen climate events. Therefore, 

Fig. 3. (a) Composite anomalies of SST. (b) Long term summer mean GPH and winds at 850 hPa. (c) Composite anomalies of air temperature at 850 hPa. The base 
period of 1951–2020 is used for calculating the mean climate state. Black contours in (a) and (c) are significance levels of the temperature anomalies where the 
percent sign has been omitted. A, B, and C in (a) denote the noticeable key regions of the SST composite. 
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our reversibility analysis is further cross validated. Since the data sets of 
14 wet summers is severely limited, leave-one-out cross-validation is 
used (Cawley and Talbot, 2003; Arlot and Celisse, 2010). Specifically, 
we hold-out one wet summer and calculate composite scenario of the 
other 13 wet summers. Then the previously unseen wet summer (i.e. the 
hold-out summer) precipitation is predicted based on its scenario simi-
larity. This process iterates 14 times, each iteration a different wet 
summer is held-out for validation while the remaining 13 summers are 
used for calculating composite scenario. At last, the accuracy of the 
prediction is measured by the well-known mean absolute percentage 
error (MAPE) method, which is widely used to measure the forecast 
accuracy. Let Ot and Ft denote the observed and forecasted values at data 
point t, respectively. According to Kim and Kim (2016), the the absolute 
percentage error (APE) is defined as: 

APE =
∑N

t=1

⃒
⃒
⃒
⃒
Ot − Ft

Ot

⃒
⃒
⃒
⃒ (3)  

and the the MAPE is defined as: 

MAPE =
1
N

∑N

t=1

⃒
⃒
⃒
⃒
Ot − Ft

Ot

⃒
⃒
⃒
⃒ (4) 

To test the sensitivity of the composite analysis and the reliability 
analysis, we repeated all analyses using other gridded datasets including 
ERA5 (http://climate.copernicus.eu/products/climate-reanalysis) and 
HadSST4 (https://www.metoffice.gov.uk/hadobs/hadsst4/). The re-
sults generated from ERA5 and HadSST4 agree well with these from 
NCEP/NCAR and ERSST5. Therefore, most results presented in this 
study are derived from NCEP/NCAR and ERSST5, unless otherwise 
noted. 

3. Composite results 

In order to examine large scale atmospheric conditions associated 
with wet summers in North China, global composite analyses were 
performed for the 14 wet summers shown in Fig. 1b. The composite 
results are shown in Figs. 2 and 3. Composite anomalies which are sig-
nificant at the 90, 95, and 99% confidence levels are shown in shadings 
(Fig. 2) or contours (Fig. 3a, c). These areas are named as key regions in 
the sense that they contain important signals of physical mechanisms 
leading to a wet summer in North China. The corresponding anomaly 
patterns within key regions are named as key features, which are closely 
associated with wet summers in North China in the sense that they occur 
significantly more often during wet summers than they do climatologi-
cally. Figs. 2 and 3 are displayed in a global view because the identified 
key regions are distributed worldwide. As such, valuable signals will not 
be missed and the reliability of the composite analysis can be achieved 
properly. 

At 200 hPa (Fig. 2a), no significant signal of the EAJ depicted in 
previous studies near 40 N can be detected. The TEJ is strengthened, 
while the statistical significant area of the intensified TEJ is mainly over 
the tropical Atlantic. Interestingly, the most noticeable key features are 
located in the Southern Hemisphere: intensified upper-level westerlies 
near 30◦S and weakened westerlies near 60◦S. This suggests that the 
Southern Hemisphere plays a significant role in the dynamical processes 
associated with wet summers in North China, which is in line with Li 
et al. (2012). The weakened westerlies near 60◦S may associated with a 
negative phase of the Southern Annular Mode (SAM, http://www.bom. 
gov.au/climate/enso/history/ln-2010-12/SAM-what.shtml). For the 
mechanisms how SAM influences the precipitation in the North Hemi-
sphere, the reader is referred to Dou et al. (2020) and its references. 
Fig. 2a shows that the anomalies of the westerly winds in the Southern 
Hemisphere are generally induced by three cyclonic anomalies and two 
anticyclonic anomalies (Ls and Hs in Fig. 2a). The cyclonic anomalies 
are located over the southeast Atlantic, the south Indian, and the 

southeast Pacific Oceans near 40–45◦S, and the anticyclonic anomalies 
are near (100◦E, 70◦S) and (50◦W, 75◦S). According to Peixoto and Oort 
(1992), those upper-level anomalies are strongly depended on the 
forcing at the surface. Indeed, comparing the air temperature anomaly 
maps at 200, 500 (not shown here), and 850 hPa (Fig. 3c), we find that 
significant cool anomalies can be found in regions with cyclonic 
anomalies at 200 hPa (Fig. 2a). Corresponding to the anticyclonic 
anomalies, warm anomalies can be found at 500 hPa near (100◦E, 70◦S) 
and 850 hPa near (50◦W, 75◦S). While the cool anomalies generally 
reach the 1% significance level, neither of the warm anomalies are 
significant, even for the 10% significance level. 

At 500 hPa (Fig. 2b), the three cyclonic anomalies and the two an-
ticyclonic anomalies at 200 hPa, as well as the associated westerly 
anomalies are noticeable as well. The tropical easterly jet is intensified 
significantly over the Pacific. Similar to the distribution of key regions at 
200 hPa, noticeable signals are mainly found in the Southern Hemi-
sphere and the tropical oceans. In the Northern Hemisphere, a notice-
able climatic signal is the wave train between 40 and 60◦N. The cyclonic 
anomaly over Mongolia is a profound feature of this wave train due to its 
high confidence level and its short distance to North China. According to 
Ding et al. (2008), this cyclonic anomaly is associated with more 
frequent invasion of cold air from high latitude to North China. The cold 
air interacts with relatively warm and moist air over North China and 
thus brings more summer rainfall there. 

At 850 hPa (Fig. 2c), the pattern of circulation anomaly is similar to 
500 hPa, including the weakened westerlies in the Southern Hemisphere 
and the strengthened easterlies over the tropical Pacific. In the Northern 
Hemisphere, the large cyclonic anomaly over Mongolia and the associ-
ated wind anomalies are the nearest and thus the most direct processes 
associated with wet summer in North China. On the long term summer 
mean 850 hPa GPH map, a trough lays over Mongolia (Fig. 3b). A 
cyclonic anomaly indicates that, during wet northern summer, the 
trough is either deeper or more persistent than its climatological mean 
condition, or both. This deeper and more persistent low level trough 
favours wet summer in North China. On one hand, its southwest flank 
transports more cold air from northwest down to North China, which is 
verified by the stronger zonal winds to its south-southwest. On the other 
hand, on its southeast flank, more warm moist air from south can be 
transported to North China. This is verified by the stronger zonal and 
meridional winds on its southeast flank (Fig. 2c). When cold air from 
northwest meets the warm moist air from south, rainfall is more likely to 
occur (Li and Dolman, 2016). 

The importance of the intensified trough to the rainfall in North 
China has long been documented (e.g. Dai et al., 2005). As for the water 
vapour transport, it is generally believed to be either due to the WNPSH 
or due to the Tibetan low, which drives the Eastern Asian summer 
monsoon (e.g. Li et al., 2016). According to our composite study, how-
ever, the anomaly of warm moist southerly flow is mainly due to the 
intensified trough over Mongolia, since only weak and non-significant 
intensification can be found from its two counterparts (Fig. 2b, c). 

Since the circulation anomalies are frequently documented as being 
forced by the SST (e.g. Peixoto and Oort, 1992; Boschat et al., 2016), the 
composite anomalies of SST were calculated and shown in Fig. 3a. 
Despite the SST pattern having remarkable interannual variation, two 
regions show up as significantly associated with wet summer in North 
China. The most noticeable feature is the robust cold chain from 20◦W to 
150◦E near 30◦S. Within this cold chain, four spots are characterized by 
a high confidence level, which is above 99%. The two largest spots are 
located to the west and east of South Africa, and are marked as spot A 
and B in Fig. 3a, respectively. The second region (spot C) is located in the 
eastern tropical Pacific, with somewhat lower confidence level of 95%, 
but noticeable anomaly magnitude (approximately − 1 ◦C near the cool 
center). 

The cold chain from 20◦W to 150◦E near 30◦S shows up as the most 
noticeable SST anomaly feature not only for the large scope and 
magnitude of the anomaly but also for its high confidence level. This 
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cold chain, together with warmer SST to its south, sets up a very similar 
temperature pattern of the low-level air in the Southern Hemisphere 
(Fig. 3c). Cold air near 40◦S, together with warmer air to its south, re-
duces the temperature contrast between 40◦S and 60◦S. Consequently, 
the pressure gradient is lower than the climate mean and the prevailing 
westerly winds are weaker in wet summer, agreeing with the circulation 
pattern discussed above. 

Another noticeable feature revealed in Fig. 3a is the dramatic cooling 
of the eastern to central tropical Pacific during wet summer in North 
China. Despite the fact that the confidence level of the cooling anomaly 
is not as high as the cold chain near South Africa, the magnitude of the 
anomaly is much larger, approximately − 1 ◦C near the cooling center 
(Fig. 3a). This cooling anomaly may imply that the summer rainfall in 
North China can be associated with ENSO and prefers the La Niña 
episode. However, this depends on the definition of ENSO. On the one 
hand, when the Oceanic Niño Index was calculated based on the Niño 
3.4 index defined by Trenberth (1997), we found that the wet years of 
1953 and 1963 are identified as El Niños, 1954, 1964, 1971 and 1973 
are La Niñas, and all other seven wet years are identified as neutral. In 
this case, no significant association can be found between ENSO and wet 
summers in North China based on data sets uses in the present study. On 
the other hand, when we define El Niño as the positive summer SST 
anomaly in Niño 3.4 Region, La Niña as the negative anomaly, and 
without neutral year, we found that except 1953, 1963, 1966, and 1977, 
all the other nine wet years are La Niñas. In this case, wet summer in 
North China is associated with ENSO. 

4. Reliability of composite analysis 

To show the usefulness of composite analysis, an algorithm is needed 
to evaluate the quality of composite result objectively. 

4.1. Evaluate the composite result qualitatively 

To evaluate the composite result objectively, we calculate the sce-
nario similarities for key regions defined by significance levels (p-value) 
of 0.1, 0.05, and 0.01, threshold values (α in eq. 1) between 0 and 1, with 
bins of 0.1 width. In the present study, the scenario similarity is calcu-
lated based on 13 composite features, corresponding to 13 variables 
including the geopotential height, air temperature, zonal and meridional 
winds at pressure levels of 850, 500, and 200 hPa, and SST. The two 
figures in the Appendix give an example showing how key region, key 
feature, and composite feature defined. The linear relationships between 
the summer precipitation anomalies and the scenario similarities are 
calculated and plotted in Fig. 4. 

Fig. 4 is a scatter diagram illustrating statistical relations between 
summer precipitation anomalies in North China and the corresponding 
total scores (s), under three confidence levels and ten threshold values 
(α). The values of s and N are displayed instead of the scenario simi-
larities in expression (2) because showing the N values is easier for the 
discussions below, also because the scenario similarity is easy to be 
derived from N by expression (2). Fig. 4 clearly suggests that positive 
relationships exist between the scenario similarities and summer rainfall 
anomalies. All the linear relationships are statistically significant above 
the confidence level of 99.9% and all the correlation coefficients are 
larger than 0.5 (not shown here). Based on the linear relationship be-
tween the scenario similarity and summer rainfall anomaly, wet summer 
in North China can now be predicted by the scenario similarity (recall its 
definition in Section 2). 

Since wet summers in North China can now be predicted, it is safe to 
say that when the climate condition is similar to the composite scenario 
shown in Section 3, a wet summer in North China is more likely to 
happen (the probability is 10 out of 14, see below). Therefore, the 
reversibility of the composite results discussed in Section 3 has now been 
shown to exist and the composite results are reliable. 

Fig. 4. Scatter diagram illustrating statistical relations between summer precipitation anomalies in North China and the corresponding total scores(s in expression 2), 
under particular confidence levels (p-values) and a variety of threshold values(α). The 14 red dots are the selected wet summers shown in Fig. 1b. The values of s and 
N are displayed instead of the scenario similarities, which can be derived by expression (2). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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4.2. Evaluate the composite result quantitatively 

Until now, we have shown that the scenario similarity is positively 
related to rainfall anomaly in North China. The composite analysis 
formed in Section 3 is thus reliable, not only because that the key fea-
tures identified by the composite analysis occur significantly more often 
during wet summers in North China than they do climatologically, but 
also because that, based on the signals accumulated from the indentified 
key features, wet summers can generally be “predicted”. 

However, in many cases, it may require a quantitative evaluation of 
the predictability/reversibility of signals extracted from composite 
analysis. For example, Fig. 4 gives 30 examples of linear models pre-
dicting wet summers in North China based on the scenario similarity. 
Despite the fact that these linear models are similar on visual inspection, 
and despite all the linear relationships are statistically significant, dif-
ferences of predictability do exist between these linear models. The 
differences are more obvious for the distribution of the red dots, which 
correspond to the selected wet summers shown in Fig. 1b. In this case, 
one may want to know, which model has better predictability of wet 
summers? 

The accuracy of the prediction is used to calculate the accuracy of 
reversibility. We apply a root-mean-square (RMS) operation to the 
queue number difference between the predicted and the observed 
summer rainfall. Table 1 is an example illustrating how this process is 
carried out for the condition when p-value is 0.05 and α is 1, which 
corresponds to the scatter plot in the second row and the last column in 
Fig. 4. It can be seen from Table 1 that 10 of the 14 wet summers are 
predicted as the top 20%. Specifically, the wettest summer observed in 
1964 is predicted as the wettest as well. 

The results of the RMS operation for all the conditions displayed in 
Fig. 4 are shown in Table 2. It appears that a higher confidence level 
used in composite analysis does not necessarily leads to a higher accu-
racy of reversibility. The reason lies in the key region identification. A 
higher confidence level normally leads to fewer and smaller key regions 
(see key regions shown in Fig. 2 as examples), and thus smaller potential 
full score (N). This is further verified by Fig. 4. On its right side, the 
potential full scores are 360, 263, and 109 for confidence levels of 90, 
95, and 99%, respectively. Since a higher accuracy of reversibility can be 
reached by the confidence level of 95%, it is reasonable to believe that 
signals from the additional regions, which are identified by confidence 
level of 95% besides the key regions identified by 99%, do have influ-
ence on the occurrence of wet summers in North China. 

Similarly, it can be seen from Table 2 that a higher threshold in 
calculating the scenario similarity does not necessarily leads to a higher 
accuracy of reversibility either. A higher threshold increases the simi-
larities in magnitude. However, it makes more key regions get the score 
of zero. Signals from these regions are thus excluded in predicting wet 
summer in North China. It is not clear whether signals of the excluded 
regions are more powerful in predicting wet summers than the 
improvement of magnitude similarity by increasing the threshold 
(Table 2). This explains why the ensemble-mean scenario similaritiy is 
used in Section 4.3 for the cross-validation. 

Note that scores indicating scenario similarity shown in Fig. 4 are not 
suitable for predicting neutral or dry years. For these purposes, corre-
sponding composite analysis based on neutral and dry events are 
required respectively. It also explains the reason why only 14 wet years 
are used for the RMS calculation in Table 1. In general, the events used 
in the RMS operation should be the same as the events used in forming 
the composite analysis. 

4.3. Cross-validation 

To examine the reliability of composite analysis explictely, the 
reversibility is further cross-validated. First, we hold-out one wet sum-
mer (1953), and calculate the ensemble-mean scenario similarities for 
the remaining 13 wet summers. Fig. 5 shows the linear relationship 
between the regional mean summer rainfall and the ensemble-mean 
scenario similarity of the remaining 13 wet summers (blue triangles). 
The black line is the fitted linear regression model. Second, we calculate 
the ensemble-mean scenario similarity of the hold-out year (1953). 
Third, the observed regional mean rainfall in the summer of 1953 is 5.3 
mm per day and the predicted value is 5. Therefore, the absolute per-
centage error (APE) of the prediction is 0.3 and the absolute percentage 
error is 5.8% (rounded numbers). 

This process iterates 14 times. Each time, a different wet summer is 
heldout for validation while the remaining 13 summers are used for 
calculating composite scenario. Table 3 lists the observed and predicted 
rainfall for each wet summer and the corresponding APE value. Overall, 
the previously unseen wet summers can be predicted with the mean 
absolute percentage error around 6%, further showing the power of 
composite analysis. 

5. Summary and discussions 

Composite analyses have been frequently performed to form hy-
potheses of various climate relations. However, conflicting conclusions 
can be obtained (Boschat et al., 2016; Laken and Calogović, 2013). 
According to Laken and Calogović (2013) several issues may affect 
composite results, including (1) signal-to-noise ratios related to spatio- 
temporal restrictions; (2) interference from variability in data at time-
scales greater than those concerning hypothesis testing; (3) biases 
imposed by the use of improper normalization procedures. While the 
present study was not designed to remove these issues, we developed a 
method to quantitatively evaluate the reliability of the composite 
analysis which allows us to detect unsuitable settings. 

Such a complete composite study (i.e. the traditional composite 
analysis plus reliability analysis) is illustrated using wet summers in 
North China as an example. Traditional composite analyses on the global 
atmospheric circulation and SST features have been implemented to 
detect signals driving wet summers in North China. The analyses sug-
gested that the cyclonic anomaly over Mongolia at 500- and 850-hPa is 
closely associated with wet summer in North China. Similar result has 
been achieved by previous composite studies (e.g. Ding et al., 2008). The 
importance of the intensified trough to the rainfall in North China has 
long been documented. For example, Ding et al. (2008) demonstrated 
that it is associated with more frequent invasion of cold air from high 
latitude to North China. The cold air interacts with relatively warm and 
moist air over North China and thus brings more summer rainfall there. 

Table 1 
An example illustrating how to conduct the root-mean-square (RMS) operation. 
The values correspond to the condition when p-value is 0.05 and α is 0.2 in Fig. 4. 
Specifically, the queue number of predicted rainfall is derived from s/N, which 
corresponds to the scenario similarity in Eq. (2).  

Year Queue number of 
observed rainfall 

Queue number of 
predicted rainfall 

difference square 

1964 1 1 0 0 
1956 2 3 1 1 
1953 3 5 2 4 
1971 4 12 8 64 
1973 5 13 8 64 
1977 6 19 13 169 
1963 7 4 − 3 9 
2016 8 30 22 484 
1996 9 26 17 289 
1995 10 28 18 324 
1966 11 7 − 4 16 
1954 12 2 − 10 100 
1959 13 6 − 7 49 
1967 14 9 − 5 25 
sum    1598 
mean    114.14 
square root 

(RMS)    
10.7  
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Besides the importance on rainfall formation mechanism, we found the 
intensified trough plays a role in water vapour transport as well. Inter-
estingly, we found the most profound effects come from the Southern 
Hemisphere, not only for the high confidence levels shown in Figs. 2 and 
3, but also for the large magnitude of the composite anomalies, and for 
the large size of the key regions we defined in Section 4. We did however 
not set out to provide a novel explanation for these from a physical 
perspective. 

Rather we aimed to address the question: to what extent can we 
believe the result of composite analysis? To answer this question, we 
proposed a post-processing method to the traditional composite analysis 
technique. The reliability of composite analysis was evaluated by a 
simple and straightforward notion. Similar to Boschat et al. (2016), the 
phrase ‘reversibility’ was used: when the signals driving wet summer in 
North China have been extracted appropriately, in turn, wet summers 
should be retrospectively predicted based on these signals. In the present 

study, we show that the composite analysis is quite reliable when it has 
been formed appropriately. Based on the signals from composite anal-
ysis, 10 of 14 wet summers could be predicted under various threshold 
values (α) and significance levels (p-value). Cross-validation further 
shows that, based on the signals extracted from composite analysis, 
previously unseen wet summers can be predicted with mean absolute 
percentage error (MAPE) around 6%. 

The advantage of the reliability analysis lies in the following aspects. 
First, rather than using several boxes to extract signals subjectively, here 
we extract signals based on key regions objectively. The definition of key 
regions is of great importance. On the one hand, it guarantees that only 
the correct signals above a particular confidence level are extracted. 
Therefore the unrelated background noises will be removed in our 
reliability analysis. On the other hand, significant signals are extracted 
globally. Therefore valuable information will not be missed. Second, αA 
divides the magnitude of composite anomalies into ten degrees and thus 
the scenario similarity does not rely solely on any particular composite 
value. In this way, signals extracted based on various threshold values 
(α) can be compared and analyzed as discussed in Section 4. 

Signals carried by different key regions are of different importance. 
Intuitively, we may think signals from larger key regions are more 
important than smaller key regions, signals from key regions with larger 
magnitude of composite anomalies are more important than smaller 
magnitudes, and signals from key regions with higher confidence levels 
are more important than lower confidence levels. For the last case, we 
shown that a higher confidence level used in composite analysis does not 
necessarily leads to a higher reversibility because signals from sufficient 
key regions matters. 

One way to compare the relative importance of signals carried by 
different key regions is calculating the reversibility based on signals 
from each key region. Then all the reversibility can be quantified ac-
cording to the method we proposed in Section 4. In theory, the most 
important signal comes from the key region corresponding to the least 
RMS value, the second most important signal corresponds to the second 
least RMS, and so forth. In practice, however, it is more difficult. The 
signals are generally so weak that no single signal can effectively predict 
wet summers in North China. Therefore, signals from more than one key 
region should be used to compare the overall relative importance. In this 
case, the number of the reversibility analysis we introduced in Section 4 
will have to be repeated for (2N − N − 1) times. Considering the large N 
values showing in Fig. 4, this will have severe computational limitations. 
More efficient algorithms may need to be developed to further release 
the power of composite analysis, and help to understand the nature of 
atmospheric relations better. 

The present study evaluated the validity and reliability of the com-
posite analysis by investigating the climatic factors of wet summers in 
North China. To our knowledge, this is the first study showing the 
reliability of the composite results. Therefore, it is safe to limit our 
conclusions to the specific case of wet summers in North China at this 
moment. Future studies can apply our methodology to other regions for 
other climate phenomena using different datasets. In this way, hope-
fully, the reliability of the composite analysis can be widely accepted. 
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Table 2 
The result of the root-mean-square operation for key regions defined by significance levels (p-value) of 0.1, 0.05, and 0.01 and threshold values (α in Eq. (1)) between 
0 and 1, with bins of 0.1 width.   

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.1 11.7 11.7 11.6 11.6 11.5 11.6 11.4 11.7 11.8 11.6 
0.05 11.6 11.6 11.9 12 11.2 11.1 11.2 10.9 11 10.7 
0.01 14.5 15 13.8 14.6 14.1 13.2 13.1 12.8 12.3 12.3  

Fig. 5. Scatter diagram illustrating statistical relations between scenario simi-
larity and summer precipitation. The black line is the fitted linear regression 
model, based on values of the remaining 12 wet summers (blue triangles). The 
red star shows the relation between the observed precipitation and scenario 
similarity for the hold-out year of 1953. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 3 
A table showing the cross-validation results. The prediction accuracy is evalu-
ated by the mean absolute percentage error (MAPE).  

Hold-out year Observed precip Predicted precip APE (%) 

1953 5.3 5.0 5.8 
1954 4.8 5.1 7.0 
1956 5.8 5.1 12.9 
1959 4.8 5.1 6.6 
1963 5.1 5.1 0.0 
1964 6.0 5.1 14.8 
1966 4.8 5.0 3.0 
1967 4.7 5.1 8.4 
1971 5.2 5.0 4.7 
1973 5.2 4.9 4.5 
1977 5.1 4.9 5.2 
1995 5.0 5.0 0.0 
1996 5.0 4.9 2.2 
2016 5.0 5.2 3.2 
MAPE   6.01  
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