175 research outputs found

    On Rationality

    Get PDF
    Rationality is an enduring topic of interest across the disciplines and has become even more so, given the current crises that are unfolding in our society. The four books reviewed here, which are written by academics working in economics, political science, political theory and philosophy, provide an interdisciplinary engagement with the idea of rationality and the way it has shaped the institutional frameworks and global political economy of our time. Rational choice theory has certainly proved to be a useful analytic tool in certain contexts, and instrumental reason has been a key tenet of human progress in several periods of history, including the industrial revolution and the modernity that emerged in the nineteenth century. Given the complexity of our current challenges, however, is it time to ask whether this paradigm might be better complemented by more holistic and heterodox approaches? Hindmoor A and Taylor TY (2015) Rational Choice (Political Analysis), 2nd edn. London; New York: Palgrave Macmillan. Massumi (2015) The Power at the End of the Economy. Durham: Duke University Press. Brown (2015) Undoing the Demos: Neoliberalism’s Stealth Revolution. New York: Zone Books. Ludovisi SG (ed.) (2015) Critical Theory and the Challenge of Praxis: Beyond Reification. Farnham; Burlington, VT: Ashgate

    MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors

    Get PDF
    Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798

    Short-Term Hurricane Impacts on a Neotropical Community of Marked Birds and Implications for Early-Stage Community Resilience

    Get PDF
    Populations in fragmented ecosystems risk extirpation through natural disasters, which must be endured rather than avoided. Managing communities for resilience is thus critical, but details are sketchy about the capacity for resilience and its associated properties in vertebrate communities. We studied short-term resilience in a community of individually marked birds, following this community through the catastrophic destruction of its forest habitat by Hurricane Iris in Belize, Central America. We sampled for 58 d immediately before the storm, 28 d beginning 11 d after Hurricane Iris, and for 69 d approximately one year later. Our data showed that the initial capacity for resilience was strong. Many banded individuals remained after the storm, although lower post-hurricane recapture rates revealed increased turnover among individuals. Changes occurred in community dynamics and in abundances among species and guilds. Survivors and immigrants both were critical components of resilience, but in a heterogeneous, species-specific manner. Delayed effects, including higher fat storage and increased species losses, were evident one year later

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Natural Killer Cells from Patients with Recombinase-Activating Gene and Non-Homologous End Joining Gene Defects Comprise a Higher Frequency of CD56bright NKG2A+++ Cells, and Yet Display Increased Degranulation and Higher Perforin Content.

    Get PDF
    Mutations of the recombinase Activating Genes 1 and 2 (RAG1, RAG2) in humans are associated with a broad range of phenotypes. For patients with severe clinical presentation, hematopoietic stem cell transplantation (HSCT) represents the only curative treatment, however high rates of graft failure and incomplete immune reconstitution have been observed, especially after unconditioned haploidentical transplantation. Studies in mice have shown that Rag-/- NK cells have a mature phenotype, reduced fitness and increased cytotoxicity. We aimed to analyze NK cell phenotype and function in patients with mutations in RAG and in non-homologous end joining (NHEJ) genes. Here we provide evidence that NK cells from these patients have an immature phenotype, with significant expansion of CD56bright CD16-/int CD57- cells, yet increased degranulation and high perforin content. Correlation was observed between in vitro recombinase activity of the mutant proteins, NK cell abnormalities, and in vivo clinical phenotype. Addition of serotherapy in the conditioning regimen, with the aim of depleting the autologous NK cell compartment, may be important to facilitate engraftment and immune reconstitution in patients with RAG and NHEJ defects treated by HSCT

    Designing clinical trials for assessing the effects of cognitive training and physical activity interventions on cognitive outcomes: The Seniors Health and Activity Research Program Pilot (SHARP-P) Study, a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The efficacy of non-pharmacological intervention approaches such as physical activity, strength, and cognitive training for improving brain health has not been established. Before definitive trials are mounted, important design questions on participation/adherence, training and interventions effects must be answered to more fully inform a full-scale trial.</p> <p>Methods</p> <p>SHARP-P was a single-blinded randomized controlled pilot trial of a 4-month physical activity training intervention (PA) and/or cognitive training intervention (CT) in a 2 × 2 factorial design with a health education control condition in 73 community-dwelling persons, aged 70-85 years, who were at risk for cognitive decline but did not have mild cognitive impairment.</p> <p>Results</p> <p>Intervention attendance rates were higher in the CT and PACT groups: CT: 96%, PA: 76%, PACT: 90% (p=0.004), the interventions produced marked changes in cognitive and physical performance measures (p≤0.05), and retention rates exceeded 90%. There were no statistically significant differences in 4-month changes in composite scores of cognitive, executive, and episodic memory function among arms. Four-month improvements in the composite measure increased with age among participants assigned to physical activity training but decreased with age for other participants (intervention*age interaction p = 0.01). Depending on the choice of outcome, two-armed full-scale trials may require fewer than 1,000 participants (continuous outcome) or 2,000 participants (categorical outcome).</p> <p>Conclusions</p> <p>Good levels of participation, adherence, and retention appear to be achievable for participants through age 85 years. Care should be taken to ensure that an attention control condition does not attenuate intervention effects. Depending on the choice of outcome measures, the necessary sample sizes to conduct four-year trials appear to be feasible.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov Identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00688155">NCT00688155</a></p

    Nitrogen and Carbon Isotopic Dynamics of Subarctic Soils and Plants in Southern Yukon Territory and its Implications for Paleoecological and Paleodietary Studies

    Get PDF
    We examine here the carbon and nitrogen isotopic compositions of bulk soils (8 topsoil and 7 subsoils, including two soil profiles) and five different plant parts of 79 C3 plants from two main functional groups: herbs and shrubs/subshrubs, from 18 different locations in grasslands of southern Yukon Territory, Canada (eastern shoreline of Kluane Lake and Whitehorse area). The Kluane Lake region in particular has been identified previously as an analogue for Late Pleistocene eastern Beringia. All topsoils have higher average total nitrogen δ15N and organic carbon δ13C than plants from the same sites with a positive shift occurring with depth in two soil profiles analyzed. All plants analyzed have an average whole plant δ13C of −27.5 ± 1.2 ‰ and foliar δ13C of ±28.0 ± 1.3 ‰, and average whole plant δ15N of −0.3 ± 2.2 ‰ and foliar δ15N of ±0.6 ± 2.7 ‰. Plants analyzed here showed relatively smaller variability in δ13C than δ15N. Their average δ13C after suitable corrections for the Suess effect should be suitable as baseline for interpreting diets of Late Pleistocene herbivores that lived in eastern Beringia. Water availability, nitrogen availability, spacial differences and intra-plant variability are important controls on δ15N of herbaceous plants in the study area. The wider range of δ15N, the more numerous factors that affect nitrogen isotopic composition and their likely differences in the past, however, limit use of the modern N isotopic baseline for vegetation in paleodietary models for such ecosystems. That said, the positive correlation between foliar δ15N and N content shown for the modern plants could support use of plant δ15N as an index for plant N content and therefore forage quality. The modern N isotopic baseline cannot be applied directly to the past, but it is prerequisite to future efforts to detect shifts in N cycling and forage quality since the Late Pleistocene through comparison with fossil plants from the same region

    Hiding a Heavy Higgs Boson at the 7 TeV LHC

    Get PDF
    A heavy Standard Model Higgs boson is not only disfavored by electroweak precision observables but is also excluded by direct searches at the 7 TeV LHC for a wide range of masses. Here, we examine scenarios where a heavy Higgs boson can be made consistent with both the indirect constraints and the direct null searches by adding only one new particle beyond the Standard Model. This new particle should be a weak multiplet in order to have additional contributions to the oblique parameters. If it is a color singlet, we find that a heavy Higgs with an intermediate mass of 200 - 300 GeV can decay into the new states, suppressing the branching ratios for the standard model modes, and thus hiding a heavy Higgs at the LHC. If the new particle is also charged under QCD, the Higgs production cross section from gluon fusion can be reduced significantly due to the new colored particle one-loop contribution. Current collider constraints on the new particles allow for viable parameter space to exist in order to hide a heavy Higgs boson. We categorize the general signatures of these new particles, identify favored regions of their parameter space and point out that discovering or excluding them at the LHC can provide important indirect information for a heavy Higgs. Finally, for a very heavy Higgs boson, beyond the search limit at the 7 TeV LHC, we discuss three additional scenarios where models would be consistent with electroweak precision tests: including an additional vector-like fermion mixing with the top quark, adding another U(1) gauge boson and modifying triple-gauge boson couplings.Comment: 42 pages, 12 figure

    Measurement of the mean central optical depth of galaxy clusters via the pairwise kinematic Sunyaev-Zel'dovich effect with SPT-3G and des

    Get PDF
    We infer the mean optical depth of a sample of optically selected galaxy clusters from the Dark Energy Survey via the pairwise kinematic Sunyaev-Zel'dovich (KSZ) effect. The pairwise KSZ signal between pairs of clusters drawn from the Dark Energy Survey Year-3 cluster catalog is detected at 4.1σ in cosmic microwave background temperature maps from two years of observations with the SPT-3G camera on the South Pole Telescope. After cuts, there are 24,580 clusters in the ∼1,400 deg2 of the southern sky observed by both experiments. We infer the mean optical depth of the cluster sample with two techniques. The optical depth inferred from the pairwise KSZ signal is τ¯e=(2.97±0.73)×10-3, while that inferred from the thermal SZ signal is τ¯e=(2.51±0.55stat±0.15syst)×10-3. The two measures agree at 0.6σ. We perform a suite of systematic checks to test the robustness of the analysis
    corecore