87 research outputs found

    Inkjet fabrication of hydrogel microarrays using in situ nanolitre-scale polymerisation

    Get PDF
    Polymer hydrogel microarrays were fabricated by inkjet printing of monomers and initiator, allowing up to 1800 individual polymer features to be printed on a single glass slide

    A versatile method for the preparation of conjugates of peptides with DNA/PNA/analog by employing chemo-selective click reaction in water

    Get PDF
    The specific 1,3 dipolar Hüisgen cycloaddition reaction known as ‘click-reaction’ between azide and alkyne groups is employed for the synthesis of peptide–oligonucleotide conjugates. The peptide nucleic acids (PNA)/DNA and peptides may be appended either by azide or alkyne groups. The cycloaddition reaction between the azide and alkyne appended substrates allows the synthesis of the desired conjugates in high purity and yields irrespective of the sequence and functional groups on either of the two substrates. The versatile approach could also be employed to generate the conjugates of peptides with thioacetamido nucleic acid (TANA) analog. The click reaction is catalyzed by Cu (I) in either water or in organic medium. In water, ∼3-fold excess of the peptide-alkyne/azide drives the reaction to completion in 2 h with no side products

    Metallofluorescent Nanoparticles for Multimodal Applications

    Get PDF
    Herein, we describe the synthesis and application of cross-linked polystyrene-based dual-function nano- and microparticles containing both fluorescent tags and metals. Despite containing a single dye, these particles exhibit a characteristic dual-band fluorescence emission. Moreover, these particles can be combined with different metal ions to obtain hybrid metallofluorescent particles. We demonstrate that these particles are easily nanofected into living cells, allowing them to be used for effective fingerprinting in multimodal fluorescence-based and mass spectrometry-based flow cytometry experiments. Likewise, the in situ reductions of the metal ions enable other potential uses of the particles as heterogeneous catalysts

    Cross-Resistance to Abiraterone and Enzalutamide in Castration Resistance Prostate Cancer Cellular Models Is Mediated by AR Transcriptional Reactivation

    Get PDF
    Androgen deprivation therapy (ADT) and novel hormonal agents (NHAs) (Abiraterone and Enzalutamide) are the goal standard for metastatic prostate cancer (PCa) treatment. Although ADT is initially effective, a subsequent castration resistance status (CRPC) is commonly developed. The expression of androgen receptor (AR) alternative splicing isoforms (AR-V7 and AR-V9) has been associated to CRPC. However, resistance mechanisms to novel NHAs are not yet well understood. Androgen-dependent PCa cell lines were used to generate resistant models to ADT only or in combination with Abiraterone and/or Enzalutamide (concomitant models). Functional and genetic analyses were performed for each resistance model by real-time cell monitoring assays, flow cytometry and RT-qPCR. In androgen-dependent PCa cells, the administration of Abiraterone and/or Enzalutamide as first-line treatment involved a critical inhibition of AR activity associated with a significant cell growth inhibition. Genetic analyses on ADT-resistant PCa cell lines showed that the CRPC phenotype was accompanied by overexpression of AR full-length and AR target genes, but not necessarily AR-V7 and/or AR-V9 isoforms. These ADT resistant cell lines showed higher proliferation rates, migration and invasion abilities. Importantly, ADT resistance induced cross-resistance to Abiraterone and/or Enzalutamide. Similarly, concomitant models possessed an elevated expression of AR full-length and proliferation rates and acquired cross-resistance to its alternative NHA as second-line treatment.Instituto de Salud Carlos III PI17/00989European Regional Development Fund "A way to build Europe"Ramon y Cajal - Ministry of Economy and Competitiveness RYC-2015-18382Ministry of Education, Culture and Sport FPU14/05461University of Granad

    Tracking cell proliferation using a nanotechnology based approach

    Get PDF
    yesTo develop an efficient nanotechnology fluorescence-based method to track cell proliferation to avoid the limitations of current cell-labeling dyes. Material & methods: Synthesis, PEGylation, bifunctionalization and labeling with a fluorophore (Cy5) of 200 nm polystyrene nanoparticles (NPs) were performed. These NPs were characterized and assessed for in vitro long-term monitoring of cell proliferation. Results: The optimization and validation of this method to track long-term cell proliferation assays have been achieved with high reproducibility, without cell cycle disruption. This method has been successfully applied in several adherent and suspension cells including hard-to-transfect cells and isolated human primary lymphocytes. Conclusion: A novel approach to track efficiently cellular proliferation by flow cytometry using fluorescence labeled NPs has been successfully developed

    Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer

    Get PDF
    The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells

    High throughput methods applied in biomaterial development and discovery

    Get PDF
    The high throughput discovery of new materials can be achieved by rapidly screening many different materials synthesised by a combinatorial approach to identify the optimal material that fulfils a particular biomedical application. Here we review the literature in this area and conclude that for polymers, this process is best achieved in a microarray format, which enable thousands of cell-material interactions to be monitored on a single chip. Polymer microarrays can be formed by printing pre-synthesised polymers or by printing monomers onto the chip where on-slide polymerisation is initiated. The surface properties of the material can be analysed and correlated to the biological performance using high throughput surface analysis, including time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) measurements. This approach enables the surface properties responsible for the success of a material to be understood, which in turn provides the foundations of future material design. The high throughput discovery of materials using polymer microarrays has been explored for many cell-based applications including the isolation of specific cells from heterogeneous populations, the attachment and differentiation of stem cells and the controlled transfection of cells. Further development of polymerisation techniques and high throughput biological assays amenable to the polymer microarray format will broaden the combinatorial space and biological phenomenon that polymer microarrays can explore, and increase their efficacy. This will, in turn, result in the discovery of optimised polymeric materials for many biomaterial applications

    Synthesis of 6,8,9 poly-substituted purine analogue libraries as pro-apoptotic inducers of human leukemic lymphocytes and DAPK-1 inhibitors

    Get PDF
    A 18-member library of 6,8,9-poly-substituted purines was prepared from pyrimidines, primary alcohols, and N,N-dimethylamides under basic conditions via a novel one-pot synthetic pathway controlled by amide sizes and the novel analogues were tested against two leukemia cell lines: Jurkat (acute T cell leukemia) and K562 (chronic erythroleukemia) cells. Compounds having a benzoxy group at C6 position of the aromatic ring exhibited antiproliferative activity in Jurkat cells whereas all compounds induced a lower effect on K562 cells. Analysis of cell cycle, Annexin-V staining, and cleavage of initiator caspases assays showed that the active purine analogues induce cell death by apoptosis. Based on these results, a new purine derivative was synthesized, 6-benzyloxy-9-tert-butyl-8-phenyl-9H-purine (6d), which displayed the highest activity of the series against Jurkat cell lines. Finally, 33P-radiolabeled kinase assays using 96 recombinant human kinases known to be involved in apoptotic events were performed. Just one of the kinases tested, DAPK-1, was inhibited 50% or more by the phenotypic hits at 10 μM, suggesting that the inhibition of this target could be responsible for the induction of cell death by apoptosis. In agreement with the phenotypic results, the most active antiproliferative agent, 6d, displayed also the lowest IC50 value against recombinant DAPK1 (2.5 μM), further supporting the potential role of this protein on the observed functional response. DAPK-1 inhibition led by 6d together with its pro-apoptotic properties against the Jurkat line makes it an interesting candidate to further investigate the role of DAPK1 kinase in triggering apoptosis in cancer cells, a role which is attracting recent interest.JJDM thanks the Spanish Ministerio de Economia y Competitividad for funding a Ramon y Cajal Fellowship. AUB thanks Medical Research Council UK – Institute of Genetics and Molecular Medicine for funding an Academic Fellowship. We acknowledge the generous supply of rIL-2 provided by the National Institutes of Health AIDS Reagent Program. IJM is grateful for the support provided to his laboratory by grant 12UDG01-ATF from Sparks, the children's medical charity, London, UK
    corecore