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ABSTRACT 

Aim: To develop an efficient nanotechnology fluorescence based method to track cell 

proliferation to avoid the limitations of current cell-labelling dyes. Material & methods: 

Synthesis, PEGylation, bifunctionalization and labelling with a fluorophore (Cy5) of 200 nm 

polystyrene nanoparticles (NPs) were performed.  These NPs were characterised and assessed 

for in vitro long-term monitoring of cell proliferation. Results: The optimisation and 

validation of this method to track long term cell proliferation assays have been achieved with 

high reproducibility, without cell cycle disruption. This method has been successfully applied 

in several adherent and suspension cells including hard-to-transfect cells and isolated human 

primary lymphocytes. Conclusion: A novel approach to track efficiently cellular proliferation 

by flow cytometry using fluorescence labelled nanoparticles has been successfully developed. 
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Introduction 

Cell division, as the default status, is a sine qua non condition for life [1]. In normal cells, the 

cell growth and division processes are tightly controlled by complex mechanisms [2]. Many 

biological responses are related to changes in cell proliferation. For instance the abnormal and 

uncontrolled cell proliferation is a hallmark of cancer cells [3], being crucial cell proliferation 

assays to control the division rate in cancer research. By contrast, the lack of proliferative 

ability of immune cells may indicate an immunodeficiency disorder. A key feature of the 

adaptive immunity is the T-cell proliferative responses to antigen stimuli [4]. Therefore, the 

measure of cell proliferation is essential in the assessment of the immune status. Among the 

wide variety of methods for measuring dividing cells, cell-labelling fluorescent dyes for 

monitoring proliferation are commercially available [5]. These exogenous reporters are 

chemical entities which interact with cellular components such as cell membrane (e.g., PKH 

lipophilic dyes), cytoplasm (e.g., CSFE) and nucleus (e.g., Hoechst 33342), and are 

distributed to daughter cells after each cell division, in a theoretically equal distribution, 

resulting in a progressive halving of the progeny fluorescence. This fluorescence intensity 

reduction can be quantified by conventional fluorescent techniques, the most used one being 

flow cytometry [5,6]. Although these fluorescent reporters are one of the most common used 

by the scientific community for the measurement of cell proliferation, they present some 

limitations such as alteration of the normal function of tracked cells, uneven distribution 

within the progeny population, rapid dilution during cell proliferation and high cytotoxic 

effects
 
[5,6]. Consequently, there is a need for a safe and efficient alternative method to track 

successfully cell proliferation to overcome these limitations. 
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Over the last decade, our group has developed several nanotechnologies for preparing  

functionalised polystyrene nanoparticles (NPs) which are then conjugated to cargoes of 

different nature from small molecules (fluorophores, sensors, small drugs) to biomolecules 

(proteins and nucleic acids and their mimics). The main benefits of using polystyrene 

nanoparticles are cellular environment is not degraded and there is no apparent toxicity to 

cells even in long term studies [7]. Specifically surface-modified polystyrene nanoparticles 

are homogeneous, exhibit a low polydispersity index, and form stable colloids in biological 

fluids. These nanodevices have been extensively used as systems for in vitro applications [7–

9]. Furthermore, these NPs enable solid phase multistep chemistries to become compatible 

with different bio-orthogonal strategies [10,11]. Easy entry in a broad range of cell types 

including adherent, suspensions and primary cell lines has been reported [8–12]. On the other 

hand, gene-expression profiling studies showed that these NPs did not induce any significant 

alteration in nanofected cell transcriptomes [13]. Recent proteomic studies showed no key 

regulators of cell cycle were affected by the internalisation of these NPs, resulting in a parent-

progeny transfer of the nanofection load. Furthermore, NPs are not exported from the cells 

because externalization- exocytosis rate is negligible, allowing long-term monitoring [14], 

and their intracellular localization has been proved [15]. These properties make NPs ideal to 

be used as cell proliferation devices. 

Herein, we present a novel approach to monitor cell proliferation based on the use of 

fluorescent bifunctionalised crosslinked polystyrene NPs (referred as fluorescent NPs). The 

alternative method is inspired by the use of cell-labelling dyes to quantify cell proliferation by 

fluorescence techniques but avoiding the limitations of the mentioned dyes by applying 

nanotechnology. 
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Materials & methods 

Cell Culture 

Cell lines were provided by the cell bank of the CIC of the University of Granada. For this 

study we used: as model of adherent cells, the human breast cancer cell lines: MCF-7, MDA-

MB-468 and MDA-MB-231; as model of suspension cells, the lymphoma cell line Raji (B-

lymphoblastic) and two types of leukemia cell lines: K562 (erythroleukemic) and Jurkat (T-

lymphoblastic). Adherent cell lines were cultured in DMEM base medium (Gibco) and 

suspension cell lines in RPMI base medium (Gibco) supplemented with 10% (vol/vol) Fetal 

Bovine Serum (Gibco), 1% L-Glutamine (Gibco) and 1% Penicillin/Streptomycin (Gibco) in 

a humidified incubator at 5% CO2 and 37º C. All cell lines tested negative for mycoplasma 

infection. 

Preparation of Fluorescent nanoparticles (NPs) 

200 nm (PDI 0.089) amino functionalized polystyrene crosslinked nanoparticles were 

prepared by dispersion polymerisation following the protocol previously described [16].  

PEGylation, bifunctionalization and dye conjugation were performed following a Fmoc-Dde 

ortoghonal strategy using Oxyma/DIC as coupling reagents (see Supplementary Fig. 1 and 

Supplementary information). The loading (mmol/g free amino groups) was calculated by 

conjugation of Fmoc-Glycine and quantification of Fmoc release analysed by UV 

spectrophotometry. The effectiveness of the Cy5 conjugation was checked by flow cytometry 

with a FACSCanto II flow cytometer (Becton Dickinson & Co., NJ, USA) and by 

fluorescence microscopy with Confocal Scanning Microscope Zeiss LSM 710 

(Supplementary Fig. 1). As control Fmoc deprotected PEGylated 200 nm NPs, referred as 

naked NPs, were used. Dynamic Light Scattering (DLS) and Zeta potential were measured on 

a Zetasizer Nano ZS ZEN 3500 in molecular biology grade water in a disposable sizing 
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cuvette for hydrodynamic size measurements or clear disposable zeta cuvette for zeta 

potential measurements. The stability of nanoparticles at 37 ºC in culture medium was tested 

at different time points by measuring the hydrodynamic size and zeta potential (see 

(Supplementary Table 1).  

 

Fluorescent NPs uptake study by flow cytometry 

Adherents and suspension cell lines were incubated with the fluorescent NPs at the 

established incubation times in a humidified incubator at 5% CO2 and 37º C. Naked NPs 

were used as control (at the specific ratio cell/NPs), and cells without nanoparticles treatment. 

After that, for adherent cells, they were detached and washed with PBS 1X; for suspension 

cells, the media was removed by centrifugation and washed once with PBS 1X. In the case of 

suspension hard-to-transfect cells, additional wash step adding a reducing agent (tris(2-

carboxyethyl)phosphine, Fluorochem) was done in order to quench possible binding 

nanoparticles in the membrane extracellular side, avoiding fluorescence interference from 

unincorporated adsorbed NPs. Then, samples were fixed in 2% paraformaldehyde (PFA) and 

analyzed via flow cytometry using FACSCanto II flow cytometer (Becton Dickinson & Co., 

NJ, USA). See Supplementary information for detailed protocol.  

 

Fluorescent nanoparticle-based proliferation assay 

Cells were properly disposed to nanoparticle incubation as described above, using 1:25000 

cell:NPs ratio and 30 minutes of nanofection. Immediately after the incubation had finished, a 

sample of nanofected cells was fixed and named time 0. After that, the rest of the nanofected 

cells were plated and maintained using appropriate culture conditions for each cell line. Every 

day, a sample of the nanofected cells was fixed and named as the corresponding harvesting 
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day (day 1, 2, 3, 4, 5, 6 and 7). Untreated and arresting cells treated with 0.5 μg/mL of 

mitomycin C (Sigma) were used as a control. Once the assay was finished, all the samples 

were analyzed by flow cytometry. Data acquisition and analysis was performed using the BP 

660/20 nm (APC filter) on a BD FACTSCanto II Flow Cytometer with BDFACSDiva™61 

software. Harvest cells from culture wells can also be analyzed directly without fixation step 

by flow cytometry for cell proliferation. 

 

In vitro lymphocyte proliferation assay 

Peripheral blood mononuclear cells (PMBCs) were thawed according to manufacture 

instructions in order to collect lymphocyte population. Nanofection protocol was adapted 

from suspension hard-to-transfect cells proliferation assay. See Supplementary information 

for detailed protocol. Appropriate stimuli to induce proliferation of lymphocyte subsets, 

phytohemagglutinin (PHA-P; Sigma), was used as a polyclonal T-cell mitogen at 2%, and 

proliferation was analysed by flow cytometry. CFSE assay was performed according to the 

manufacturer’s instructions as a control to monitor proliferation lymphocyte model assay.  

 

Results  

Optimisation of the method 

A monodispersed population of 200 nm amino funcionalized cross-linked PS-NPs (PDI 

0.089) ((1) Supplementary Fig. 1a) was obtained by dispersion polymerization as previously 

described [16]. NPs were firstly functionalized with a polyethylene glycol (PEG) spacer 

PEGylation of PS-NPs ((2) Supplementary Fig. 1a) was performed following a Fmoc solid 

phase protocol and using Oxyma/DIC as coupling reagents. This PEGylation increases the 
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biocompatibility of the NPs, thereby facilitating their transport across cell membranes. The 

NPs were bifunctionalized following an orthogonal strategy based on the use of 1-(4,4-

dimethyl-2,6-dioxacyclohexylidene)ethyl (Dde) and Fluorenylmethyloxycarbonyl (Fmoc) 

protecting groups [17]. This bifunctionalization allows the labelling of the nanoparticle by 

conjugation of a near infrared fluorophore (Cy5) (activated as NHS ester) while keeping a 

defined amount of free amino groups to keep the positive surface charge of the nanoparticle. 

The stability of these nanoparticles was tested. These nanoparticles are stable at storage 

conditions (4ºC, 2% solid content in water). In another hand, the stability at incubation 

conditions, (37 ºC in culture media supplemented with serum) has been tested (see 

Supplementary Fig. 1, Supplementary Table 1 and Supplementary information for 

details of synthesis and characterization and stability studies).   

Considering the requirements of fluorescent dye labelling procedures, the number of 

fluorescent NPs per cell and the incubation time required for obtaining a 100% of nanofected 

cells were calculated. The number of fluorescent NPs was calculated using a spectrometric 

based method recently reported by us [18]. 

To optimize cellular uptake, three different ratios of fluorescent NPs per cell (1:12500, 

1:25000 and 1:50000; cells: fluorescent NPs) were interrogated at a fixed incubation time of 

60 minutes using human breast cancer cell lines: MCF-7, MDA-MB-468 and MDA-MB-231. 

Following incubation, cells were analyzed by flow cytometry and the percentage of cells 

which are nanofected -nanofection percentage- was calculated (Fig. 1a). The data show that 

although there are high percentage of cells nanofected in all tested conditions, the required 

100% value was reached when using the 1:25000 ratio (cell:fluorescent NPs). Although 100% 

of cells are nanofected at one point, NPs uptake continues and the nanofection load increases 

proportionally to the number of NPs. For this reason, an analysis of the median of 
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fluorescence intensity increments (ΔMFI=MFI nanofected/MFI non-nanofected) was 

performed to obtain information about nanofection load (Fig. 1b). This analysis reveals that 

the larger the number of NPs, the greater the cellular uptake. It observes that the increase of 

the nanofection load -ΔMFI units- is doubled when the fluorescent NPs per cell is doubled 

(Fig. 1b). This feature allows controlling nanofection loads which is crucial to determine the 

labelling incubation times. As expected, the uptake capability -nanofection load- of the 

different cell lines differ between them so these times need to be adjusted for each cell type. 

To corroborate that fluorescence detected by flow cytometry was generated by NPs located 

inside cells rather than NPs absorbed on the cell membrane, a confocal microscopy analysis 

was carry out. Confocal images for three orthogonal axes of the nanoparticle uptake are 

shown in Supplementary Fig. 2. It was observed the intracellular location of these NPs. 

 

To further optimize the nanofection protocol, we performed a deeper study of the nanofection 

behaviour in a time course assay to determine the influence of the incubation time. We 

analyzed the nanofection percentage and nanofection load at different established time points 

(10, 20, 30, 40, 50, 60 and 75 minutes) using the ratio 1:25000 (cell:fluorescent NPs) (Fig. 

1c,d). The ΔMFI analysis shows that the phenomenon of doubling nanofection load also 

occurs when the time is doubled (Fig. 1c). On the other hand, after 30 minutes of incubation, 

the 100% of all adherent cell lines were nanofected (Supplementary Fig. 3). The 

proportional increase of the nanofection load relative to the incubation time confirms the 

possibility to control the specific value of ΔMFI units obtained also changing the incubation 

time.   

Once this method was optimised with adherent cells, human erythroleukemic cell line K562 

was used as suspension cell model in order to evaluate the options of the method. Results 
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obtained with K562 presented the same features as when using adherent cells in terms of 

nanofection load and percentage (Fig. 1d). Furthermore, to verify the feasibility of this 

method, suspension hard-to-transfect cells, such as lymphoma cell lines Jurkat and Raji, were 

evaluated. Proportional increase of the nanofection load related to incubation time was also 

shown (Fig. 1d). In both cases, the best ratio cell:fluorescent NPs was 1:25000 and optimum 

incubation time was 30 minutes.  

An important aspect to keep in mind when developing methods for proliferation monitoring is 

their potential cytotoxicity. The cell cycle was evaluated by flow cytometry following 

propidium iodine staining. Evidence of cell dead was not observed in any cell line (Fig. 1e). 

None of them presented a significant increment in the subG1 population after NPs treatment, 

showing any toxic effect. Instead, perfect matches between cell cycle profile of untreated and 

nanofected cells were observed after seven days of incubation. There is not a significant 

difference between the percentage of cells in each phase of the cell cycle in any condition 

(p<0.05) (Fig. 1d and Supplementary Fig. 4a). Additionally, a long-term tetrazolium-based 

toxicity assay to assess mitochondrial function was performed in NP treated cells compared to 

untreated cells using two different NP:cell ratios. Same proliferation level was maintained in 

all conditions tested and no substantial metabolic changes due to NP treatment were observed 

(Supplementary Fig. 4b).  These results suggest that nanofection load can be controlled in a 

robust manner through concentration and incubation time and cell-NP interaction does not 

adversely affect cell viability.  

 

Predictive calculation of optimum range of nanofection 

In this study, ΔMFI analysis revealed that median of fluorescence intensity decreases over 

time, and importantly this empirical observation was evident in all cell lines tested. 
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Surprisingly, this fluorescence decay was differed dependent on cell line. These data 

supported possibility of use doubling time as a key parameter for cellular-based assays using 

NPs in order to optimize cellular uptake. Previous simulations predicts an exponential decay 

of the average number of nanoparticles per cell with a decay constant given by where is the 

cell population doubling time [19]. Therefore, we propose a mathematic approximation to 

predict the correct NPs amount to be able to monitor cell proliferation. Accordingly, previous 

optimization assay will not be required for using this method with new cell lines. As 

mentioned above, time-point assay can be determined by calculating the nanofection load 

values together with population doubling time. Cells can theoretically be monitored until 

complete dilution of fluorescents NPs, i.e. when ΔMFI decrease to 1 unit. This end point is 

reached when median fluorescence intensity of nanofected cells is equal to median 

fluorescence intensity of non-nanofected cells (background). However, this fluorescent NPs 

dilution is also influenced by population doubling times of cell lines. In the division process 

of a nanofected cell, a parent-progeny transfer of NPs is produced. After each division, the 

nanofection load halves into daughter cells reducing fluorescence intensities -nanofection 

load- to half. This results in an exponential decay of the fluorescence division after division. 

This force us to consider the ratio “nanofection load: population doubling times” for long-

term assay. 

With this purpose, we calculate population doubling times of adherent and suspension cell 

lines. We observed that considering the number of cell divisions of each cell line in specific 

period of time, we can estimate the optimal range of nanofection load -ΔMFI units- that we 

need in order to monitor cells during that period of time. Applying the general formula that is 

used for exponential growth and decay formula we know the optimal ΔMFI value require at 

the start of the experiment: 
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Y=Y0κ
x

 

Y = ΔMFI units at the end of the experiment (equal to 1). 

Y0 = ΔMFI units at the start of the experiment. 

 κ = Reduction rate constant (equal to 0.5; after each division the ΔMFI units are reduced 

to the half). 

 X = Number of divisions of each cell line in an specific period (days)  

 

By applying this formula, an estimation of the initial range of nanofection load can be 

calculated. We applied that formula to our experimental data with MDA-MB-231, MDA-MB-

468 and MCF-7 cell lines. The doubling time is respectively 38, 40 and 43 hours. Typical 

monitoring proliferation assays take 7 days. During this time, MDA-MB-231 cells divide 4.4 

times, MDA-MB-468 cells 4.2 times, and MCF7 3.9 times. In contrast, suspension hard-to-

transfect cells, Jurkat and Raji, proliferate faster. In consequence their doubling time is lower 

(23 and 25 hours respectively) and their division ratio in 7 days higher (7.30 and 6.72 times). 

In particular, using this predictive approach we found that to monitor MDA-MB-231, MBA-

MB-468 and MCF7 cells, an initial nanofection load of around 21.4, 18.4 and 15 ΔMFI units, 

respectively, would be required. In the case of suspension hard-to-transfect cells, which have 

greater division ratio, higher ΔMFI units would be required (158.1 for Jurkat cells and 105.4 

for Raji cells) (Supplementary Table 2). Remarkably, using the ratio 1:25000 

(cell:fluorescent NPs), these ΔMFI values were obtained for all cell lines with a 30 minutes 

incubation time (Fig. 1c and Supplementary Fig. 5). These results confirm the predictive 

value of this mathematic approach. Using this exponential decay formula, an estimation of a 

range of fluorescence intensity initial can be successfully calculated. 

 

Validation of this method 
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Once all parameters were efficiently established (concentration and time of incubation 

together with doubling time), we tested this novel method for tracking cell proliferation. For 

this purpose, a long-term assay of cellular monitoring was performed. Adherent and hard-to-

transfect suspension cells were nanofected (25,000 NPs per cell, 30 minutes). Following 

nanofection, fluorescent NPs were distributed to daughter cells resulting in a progressive 

halving of the progeny fluorescence (Fig. 2a, top panel). This reduction of fluorescence 

intensity was quantified by flow cytometry. In order to monitor cell populations, harvesting 

was done at different time points (every 24 hours). Firstly, percentage and load of nanofection 

were analysed at initial time (Day 0) (Supplementary Fig. 6). Flow cytometry plots are 

shown in Figure 2b-d. During the progression of the assay, the reduction of nanofection load 

was clearly observed (Fig. 2b). ΔMFI was near 1 at day 7, validating the use of exponential 

decay formula to optimize the nanofection parameters (Fig. 2c-d).  

To reinforce the feasibility of this method, an assay to monitor the reduction of cell 

proliferation was set up. For this purpose, cell proliferation was reduced by treatment with 

Mitomycin C (MCC), a cytotoxic drug that induces cell cycle arrest in G2/M phase as 

consequence of DNA damage. In a first stage, the cytotoxic effect of this drug was determined 

by flow cytometry analysis using propidium iodide staining (Supplementary Fig. 7). The 

arrest in G2/M impedes that cells initiate mitosis, producing a stop of cell division. According 

to this, cells do not proliferate after MMC treatment; therefore, if the cells are nanofected, 

they should maintain the nanofection load after MMC treatment (Fig. 2a, bottom panel). 

With this purpose we monitored nanofected cells after MMC treatment. Following 

nanofection step, nanofected cells were treated with MCC and cell proliferation was 

monitored for 7 days. Cells samples were fixed at different time points and analyzed by flow 

cytometry. Fig. 2e shows the results of analysis of cell arrest based on this method. As 
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expected, untreated cells suffered a complete loss of the fluorescence at day 7, a reduction 

which was progressive day by day according to an exponential decay. However, the 

fluorescence intensity of MMC treated cells remained at day 7; there was not a reduction of 

fluorescence intensity compared to day 0 meaning that proliferation had stopped. This data 

confirms the feasibility of the presented method. In the particular case of suspension cells 

(Raji and Jurkat), an unexpected reduction of the fluorescence is observed in treated cells with 

MCC. This can be the result of high doubling times of these cells and delayed effect of MCC. 

This was confirmed by the time course monitoring of the MCC effect in these cells. At Day 4 

(96 h), a significant difference was observed and, consequently, the effect of this drug can be 

studied after  96 hours, time at which MMC treatment was totally effective (Supplementary 

Fig. 7 and 8).    

 

Monitoring primary lymphocytes proliferation. 

Success of adaptive immune system depends on lymphocyte proliferation. The ability to 

accurately predict proliferative behaviour of lymphocytes has important implications for 

human health research. Standard methods to measure cell proliferation based on fluorescent 

dyes are particularly toxic in this kind of cell [20]. Therefore, alternative methods which were 

not cytotoxic are required. This fact led us to assess our method for measuring lymphocyte 

proliferation. For this purpose, in the first stage, the nanoparticle uptake capacity of isolated 

human primary PBMC (monocyte depleted-peripheral blood mononuclear cells) was tested. 

PBMCs were incubated with Cy5-NP and the efficiency of NPs internalization was analysed 

by confocal fluorescence microscopy and flow cytometry. A confocal fluorescence 

microscopy confirmed the nanoparticles intracellular localization just after nanofection (Fig. 

3a). In parallel, a flow cytometry analysis was performed. It was found that our nanofection 
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parameters managed to reach 90% nanofected population (Fig. 3b-c). Nanofected population 

percentages can increase by varying incubation time and number of added NPs per cell. 

Once the efficiency of cellular labelling using NPs was proven, and in order to assess our 

method for measuring lymphocyte proliferation, the PBMCs were nanofected and stimulated 

to induce their proliferation. The analysis was performed following 7 days after PHA-induced 

proliferation. The nanofection load practically disappeared due to the induced lymphocyte 

proliferation. In fact, fluorescence intensity decrease was gradually observed over days due to 

Cy5-NPs dilution between the progeny as consequence of induced cell division (Fig. 3d). At 

day 7, the histogram plot shows a slight peak of positive population which corresponds to 

non-proliferative cells, something expected due to the fact that, following stimulation step, not 

all cell population participate in the division (Supplementary Fig. 9a). Overall, the data 

confirms the absence of deleterious effect of Cy5-NPs in the PBMC viability. 

In order to confirm our data, comparison of our nanotechnology-based method with the wide 

accessible and most popular method to measure lymphocyte proliferation (intracellular 

fluorescent dye, CFSE) was performed [20–22]. We confirmed that substantial cell 

proliferation was evident only after 3 days of culture as common feature of T and B cells 

responding to mitogens and specific antigens. CFSE dye dilution was observed in the tested 

successive time points (Supplementary Fig. 9b). The data validates the applicability of the 

method to measure lymphocyte proliferation.  

Discussion  

A good candidate for tracking cell proliferation using fluorescence techniques must have 

certain specific characteristics such as (1) have bright fluorescent features, (2) being readily 

taken up by cells, (3) being evenly distributed within progeny cells, (4) displaying slow 
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dilution rates and (5) being non cytotoxic [5,6]. The main advantages of using nanoparticles 

rather than classical approaches are that: a) they are more stable than fluorophore in solution 

[15], b) the fluorescence signal does not decreases rapidly during the first 24 hours after 

labelling, then zeroth generation can be set up using cell sample from day 0 [23] and c) they 

can be used to track a broad range of cellular types without any cytotoxic effect allowing its 

application in many biological/biomedical research fields [18]. To the best of our knowledge, 

cell clone formation assay based on nanotechnology imaging technique by using Quantum 

dot, has been the only reported to date to study the proliferative features [19]. In this work, we 

have evaluated a nanotechnology based method to monitor cell proliferation by analysing 

these properties that a good candidate for tracking cell proliferation must offer. To do so, we 

have used 200 nm PS NPs labelled with a near infra-red fluorophore (Cy5) to be able to 

evaluate these nanodevices by fluorescent techniques. However, other fluorophores of 

different nature could be used instead of Cy5. On the other hand, the role of surface charge of 

polystyrene nanoparticles on cellular uptake is still controversial. Carboxylated PS-NPs were 

ingested to a higher degree by alveolar type I cells [24], whereas preferential uptake of 

cationic PS-NPs has been observed in Madin Darby canine kidney cells [25]. However, as 

previously reported, we have found that the presence of free amino groups on the NP surfaces 

is essential to allow an efficient cell labelling [26]. Based on these findings, we have designed 

a nanodevice that contain a defined amount of free amino groups to ensure an efficient 

cellular uptake with high rate, allowing an effective internalisation and consequently an 

efficient cell labelling to be able to monitor cell proliferation in long term assays. 

Nanoparticles do not present cytotoxic effects in the cell lines tested, being this fact an 

essential characteristic therefore making them an ideal method to monitor cell proliferation. 
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Interestingly this method could be implemented using nanoparticles of different nature as far 

as they do not affect cell viability.  

We demonstrated that these nanodevices are readily taken up by the cells, and they present 

slow dilution and non-effect on the cell function. On the other hand, it is already accepted 

NPs are split between daughter cells when the parent cell divides [26]. Whether their 

distribution is equal during cell division still remains controversial. Future work could be 

focused on the determination of nanoparticle dose in a statistical framework by imaging 

microscopy using our fluorescent NPs as nanotracker. Nevertheless our results support the 

efficiency of this method. We have proven that the measurement of ΔMFI is a reliable 

parameter to monitoring the linearity over time, regardless of eventual asymmetry. MFI is 

more robust than mean values and heterogeneity from cell to cell is considered [27]. In the 

other hand, because of it is known that used hard-to-transfect cells are specialized in avoid 

uptake, we considered NPs could be remained associated to membrane cells. Hence, we have 

discriminated between NPs absorbed on the cell membrane or NPs internalized inside the cell, 

providing solid correlation between fluorescent signal observed and proliferation. Regarding 

cell cycle stage, differences in cellular nanoparticle uptake levels have been previously 

reported [26]. However, these differences are not evident during the first 5 h of exposure. 

Consequently, as shorter incubation time is needed in this methodology (only 30 minutes), 

there is not influence of cell cycle phase in the uptake of these nanoparticles. 

Changing parameters such as concentration and time of incubation, the nanofection load can 

be controlled in a robust manner in order to reach an optimum MFI initial value. We have 

demonstrated that 25000 NPs and short period of nanofection time (30 min) were adequate to 

achieve satisfactory MFI values to monitor cell proliferation during 7 days. Likewise, same 

MFI values could be accomplished applying lower number NPs added per cell and higher 
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incubation time. Even so, the highest ratio that has been used for this method is 50000 NPs 

added per cell. However, in previous work, higher concentration without observing any 

cytotoxic effect was successfully used [18]. Accordingly, the use of this method allows the 

fluorescence labelling of cells with high intensity and reproducibility (very low variance). In 

fact, this is a method of broad application as the unique cell requirement to be able to monitor 

cell proliferation using this nanotracker is efficient internalisation [27]. 

Because of these nanoparticles are not exocytosed by cells as previously was reported 

[28], make them an excellent candidate for cell proliferation monitoring, as the only 

thing diluting the signal is the division of the cell in two daughter cells. The fact that 

these nanoparticles are not toxic for any cell lines tested so far is also of remarkably 

importance as they do not affect the cell function. Indeed, lymphocyte viability after 

NP internalization and PHA-induced proliferation has been demonstrated. This 

observation suggests that NPs are non-toxic in systems cultured with less serum (such 

as PMBC), as it was previously reported [29], allowing this methodology to be 

considered in different physiological media.  

It is important to mention that, due to the fact that these fluorescent nanoparticles are 

labelled with a far red dye, then a multicolour flow cytometry assay can be set up as 

before reported [19], but without interference of the nanodevices with other 

fluorophores labelled reagents (such as fluorescein-labelled antibodies), therefore 

avoiding cell autofluorescence. 

Finally, we have proposed the use of NP-based cell tracker as a potential tool to 

monitor lymphocyte proliferation minimizing toxicity, and thereby being required 

lower initial lymphocytes number to assess. Our methodology has also proven beneficial 
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for in vitro studies as possible alternative for the current cell tracking using fluorescent 

protein and membrane dyes [21,30].  

Conclusion 

The method has been validated in several adherent cells and also in suspension cells including 

hard-to-transfect cells. Even more interesting is the fact that monitoring of cell proliferation of 

lymphocytes has been successfully achieved (so far the only efficient method to do this 

lymphocytes monitoring is CFSE staining). The method was also validated in a cell-based 

assay which determined the induced cellular arrest through MMC effect, showing the power 

of the method for long-term cellular assays. Furthermore, this new method does not alter the 

cell cycle hence presenting no cytotoxic effects. This fact corresponds to previously findings 

where NPs were never found associated with any components of the mitotic apparatus and no 

abnormal cell division was detected after their internalization [31].  

In conclusion, an alternative method to monitor cell proliferation, which can be used with a 

large variety of cell lines for long term cellular assays, is presented. We propose the use of 

nanoparticles as an accessible tool to track cell proliferation for any laboratory which could 

access nanotechnology-based approaches.    

 

Summary points 

 An efficient nanotechnology fluorescence based method to track cell proliferation has 

been validated. 

 Polystyrene nanoparticles (NPs) has been successfully synthesised, PEGylated, 

funtionalized, fluorescently labelled and characterized. 
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  These NPs has been assessed for in vitro long-term monitoring of cell proliferation in 

several adherent and suspension cells including hard-to-transfect cells and isolated 

human primary lymphocytes.. 

 These nanoparticles are stable and not toxic for any cell lines tested so far. 
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Figure 1. Optimisation of the nanofection method in the different tested cell lines.  (a) 

Analysis of Cy5-NPs cellular uptakes by MDA-MB-231 (red), MDA-MB-468 (green) and 

MCF7 (blue). Cy5-NPs, at different ratios per cell, were incubated and analysed by flow 

cytometry and percentage of cells containing Cy5-NPs is displayed.  Saturation percentage 

is represented above dotted line. (b) Study of median of fluorescence intensity increments 

(ΔMFI) at different Cy5-NPs ratios per cell (12500, 25000 and 50000) compared to cells 

without NP-treatment.  Values for cells incubated with Cy5-NPs for 60 minutes and untreated 

cells (UT) are shown. (c,d) Study of median of fluorescence intensity increments (ΔMFI) at 

different incubation time points. (c) Strong colours panel shows results for adherent cell line 

models and (d) light colours panel represents suspension cell line models. (e) Cell cycle 

distribution in cell lines before and after long term nanoparticle incubation. The percentages 

of cells in different phases of the cell cycle were determined from the histograms by flow 

cytometry. Adherent cell lines (upper and middle panels) and suspension hard to transfect 

cell lines (lower panels) were tested. Graphs summarize data from initial (Day 0) and final 

(Day 7) experimental time points. Bars represent mean ± SEM of results from 3 independent 

experiments with duplicated points. UT: untreated cells. Cy5-NPs: fluorescence 

nanoparticles.  
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Figure 2. Validation of the nanofection method in order to monitor cell proliferation. (a) 

Schematic representation of cell labelling by nanofection and the nanoparticle distribution 

into daughter cells, in a theoretically equal distribution, resulting in a progressive halving of 

the progeny fluorescence.  (b) Representative histogram plots of untreated cells (dark peak) 

compared to Cy5-NPs treated cells (light peaks) at day 0, 2, 4 and 7. Reduction of the 

nanofection load was observed over the days. (c,d) Flow cytometry was performed every 24 

hours and increment of median fluorescence intensity measured (ΔMFI) is represented for 

(c) adherent cell lines and (d) suspension hard to transfect cell lines, (e) Flow cytometry 

analysis of untreated and nanofected cell lines after Mitomycin C treatment. Open dashed 

histograms represent 7 days incubation time point, whereas the filled histograms depict initial 

experimental time point. Each panel shows a comparison between untreated cells (grey filled 

histogram) and cells treated with Cy5-NP (25000 added per cell) for 30 min (blue filled 
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histogram). The graphs show that fluorescence intensity decrease after 7 days of incubation 

due to cell division (dashed red histogram) compared to initial fluorescence. In contrast, in 

cells which cell cycle is arrested, nanoparticles have not been split and fluorescence intensity 

is maintained over time (dashed blue histogram). Each histogram is representative of at least 

3 experiments and shows percentage of maximum (Y axis) versus log fluorescence intensity 

(X axis) for 10.000 viable cells. 
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Figure 3. Demostration of Cy5 labelling lymphocytes and proliferation detection and 

monitoring of proliferating lymphocytes. (a) Confocal fluorescence microscopy to confirm 

Cy5-NPs internalization by freshly isolated lymphocytes (top panel) and demonstration of 

Cy5-NPs dilution after 7 days caused by proliferation of lymphocytes stimulated (bottom 

panel). Left panel: Merge, composition of the two recorded channels (DIC–Differential 

interference contrast– and red, Cy5-NPs). Right panel: red channel, Cy5-NPs. Scale bar, 

10 μm. (b) Analysis of the specific lymphocyte populations depending on treatment provided. 

Freshly isolated lymphocytes were subjected to the same procedure without nanoparticles 

(represented in left panel) and they were considered as untreated cells; right panel shows 

lymphocytes after 30 min Cy5-NP incubation. The results show lymphocytes population is 

not affected when Cy5-NPs were used. (c) Nanofected population (red) after 30 minutes of 

Cy5-NPs incubation versus untreated cells (blue) represented by dot plots. (d) Fluorescence 
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intensity dilution over days in PHA-induced lymphocytes (open histograms) versus untreated 

cells (filled grey histogram). Results are from a representative experiment. 

Graphical abstract. 
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Supplementary Fig. 1. Fluorescence nanoparticles synthesis and characterisation. (a) 

Schematic synthesis of fluorescence NPs.  Abbreviations:    PS,    polystyrene;    PEG,    Fmoc-

1-amino-4,7,10-trioxa-13-tridecamine succinic acid, polyethylene glycol; NP, nanoparticle.(b) 

Representative overlay dot  plot  obtained after  flow  cytometry  analysis  of  naked NPs  (blue)  
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and Cy5-NPs (Red). (c) Confocal fluorescence microscopy of naked NPs and Cy5-NPs. DIC, 

Differential Interference Contrast. Scale bar, 10 μm. (d) Particle size distribution (nm) and (e) 

Zeta potential values of amino NPs (NPs) and Fluorescent labelled amino NPs (Cy5 NPs).(f) 

Flow cytometry analysis of Cy5-NPs suspended in culture media supplemented with serum after 

7 days incubated at 37ºC. SSC, side scatter. 
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Supplementary Fig. 2. Representative confocal section image and orthogonal projections 

of MCF7 to analyze Cy5-NPs cellular uptake. Optical sections are displayed in three 

orthogonal projections [xy-projections (main panel), xz-projections (top panel), and yz-

projections (right panel)] to distinguish between extracellular and internalized nanoparticles. The 

yellow lines indicate the positions of the xz and yz planes. Channels (red, PKH26 Red 

Fluorescent Cell Linker -membrane stained-; blue, DAPI –nuclei–; and green, Cy5-NPs). 
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Supplementary Fig. 3.  Analysis fluorescence-NPs cellular uptakes by adherent cell lines. 

Cy5-NPs, at different time points, were incubated with MDA-MB -231  (Red),  MDA-MB-468  

(Green)  and  MCF7 (blue)  cell  lines  and  analyzed  by  flow  cytometry.  Percentage of cells 

containing Cy5-NPs versus cell to Cy5-NPs ratio is displayed in a bar representation to compare 

cellular uptake. >95% of Cy5 positive cells was reached at 30 minutes from 1:25000 ratio 

(cell:Cy5-NPs), represented by dotted line. Results are expressed as mean ± S.E.M. 
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Supplementary Fig. 4. Effect of NP treatment on cell viability and proliferation during time 

course experiment. (a) Ploidy histogram of the relative DNA content was determined in cells 

incubated with NPs (blue) compared with untreated cells (red). Cell cycle profiles showed 

identical viability in cells with and without NP treatment. Figure shows a representative adherent 

cell line (MDA-MB-231). Identical effect was observed in the rest of the cell lines tested. (b) 

Proliferation of NP treated cells (1:2500 and 1:5000 NPs added per cell) referred to untreated 

cells (100%) measured in adherent and suspension cell lines.  
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Supplementary Fig. 5. Higher values of ΔMFI are predicted when cell doubling time is 

lower by using the exponential decay formula. No differences between the predicted values 

of ΔMFI (dashed blue line) and those empirically obtained (red line) were observed.  
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Supplementary Fig. 6. Representative flow cytometry dot plots obtained with different 

cell lines 30 minutes incubated with 1:25000 cell to Cy5-NPs ratio. Representative Dot plots 

of untreated (top panels) and Cy5-NPs treated cells (25000 NPs, 30 minutes) (middle panels) 

are showed. Histogram overlaid of untreated cells and Cy5-NPs treated cells are showed in 

lower panels. SSC: side scatter, cellular complexity. 
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Supplementary Fig. 7. Cell cycle arrest in G2/M phase as consequence of Mitomycin C 

treatment.  DNA histograms generated by propidium iodide staining and flow cytometry 

analysis for adherent and suspension hard to transfect tested cell lines. The DNA histograms 

show a distribution comparison of cell populations in each phase of the cell cycle between 

untreated cells (red histogram) and cells treated with Mitomycin C for 96h (blue histogram). . 

Each histogram is representative of at least 3 experiments 
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Supplementary Fig. 8. Study of fluorescence differences between untreated cells and 

Mitomycin C treated cells in nanofected cell lines. Increment of median fluorescence 

intensity (ΔMFI) versus Cy5-NPs treated cells at initial proliferation time-point (0), after 4 days of 

proliferation (96h) and after 4 days of MMC treatment. Results are expressed as mean ±S.E.M. 

Statistical significance was determined by Bonferroni’s multiple comparison test between the 

different treatments of each cell lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig. 9. (a) Histrogram plot comparing both PHA-induced nanofected (blue) and 

non nanofected (unlabelled) cells (red) after 7 days. Higher blue peak represents stimulated 

nanofected cells which have diluted their fluorescence. Blue arrow shows a slight peak 

corresponding to fluorescence measurement of non-dividing lymphocytes.  Red arrow highlights 

unlabeled population, which provides a measurement of the autofluorescence of an activated 

lymphocyte population. (b) CFSE labelling dilution (FITC fluorescence) over days in PHA-

induced lymphocytes (open histograms) versus untreated cells (filled grey histogram).  
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Time (days) 
37ºC 

Size  (nm)* PDI Zeta potential (mV) 

0 205.6 0.051 19.3 
1 206.1 0.069 18.9 
2 202.3 0.087 19.6 
3 204.9 0.102 17.8 
4 205.1 0.056 18.5 
5 202.9 0.075 19.1 
6 206.8 0.098 18.4 
7 205.4 0.063 19.7 

* Dynamic Light Scattering analysis

Supplementary Table 1. Study of stability of Cy5-NPs suspended in culture media 
supplemented with serum versus time (temperature 37ºC). The in vitro stability studies 
show that, the Cy5-NPs were highly stable under the experimental conditions adopted. PDI:  
polydispersity index.  
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𝑦 = 𝑦0 × 𝑘𝑥   1 = 𝑦0 × 0.5 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Supplementary Table 2. Calculation of range of MFI units needed to 7 days proliferation 

monitoring experiment by exponential decay formula depending on cellular doubling 

time. Different doubling time values are showed in the first column. Median of fluorescence 

intensity, showed in the last column, is calculated based on exponential decay formula (on the 

top), regarding 7 days of the proliferation monitoring. Calculated doubling time for each cell line 

used in cell monitoring experiments is outlined. Therefore, considering the number of cell 

divisions of each cell line in that specific period of days, an estimated optimal range of 

nanofection load -ΔMFI units- needed was obtained.  

 

 

 

Doubling time (hour) Cell divisions in 7 days 0.5 
division number

 Y0 in MFI units 

48 3,5 0,09 11,3 

47 3,6 0,08 11,9 

46 3,7 0,08 12,6 

45 3,7 0,08 13,3 

44 3,8 0,07 14,1 

43 3,9 0,07 15,0 

42 4,0 0,06 16,0 

41 4,1 0,06 17,1 

40 4,2 0,05 18,4 

39 4,3 0,05 19,8 

38 4,4 0,05 21,4 

37 4,5 0,04 23,3 

36 4,7 0,04 25,4 

35 4,8 0,04 27,9 

34 4,9 0,03 30,7 

33 5,1 0,03 34,1 

32 5,3 0,03 38,1 

31 5,42 0,02 42,8 

30 5,60 0,02 48,5 

29 5,79 0,02 55,4 

8 6,0 0,02 64,0 

27 6,2 0,01 74,7 

26 6,5 0,01 88,1 

25 6,7 0,01 105,4 

24 7,0 0,01 128,0 

23 7,3 0,01 158,1 

22 7,6 0,01 199,0 

MCF7 

MDA-MB-468 

MDA-MB-231 

JURKAT 

RAJI 
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Supplementary Material & Methods 

Preparation of Fluorescent nanoparticles (NPs) 

Amino-methyl cross-linked polystyrene 200 nm nanoparticles were coupled with Fmoc-

1-amino-4,7,10-trioxa-13-tridecamine succinic acid ref using standard HOBt (1-

hydroxybenzotriazole)/DIC (1,3-Diisopropylcarbodiimide) chemistry. PEGylated NPs 

were centrifuged (13000 rpm), washed three times with dimethylformamide (DMF) 

before deprotecting the Fmoc group with 20% piperidine in DMF with three 

consecutive treatments, 20 min each, at room temperature and shaken at 1400 rpm. 

Fmoc deprotected NPs were then washed three times with DMF and Fmoc-Lys(Dde-

OH)ref was conjugated followed by Dde deprotection and Cy5 conjugation (near infra-

red dye). For the coupling, deprotected PEGylated 200 nm NPs were resuspended in 

DMF with DIPEA and commercially available Cy5 NHS ester (Lumiprobe) was added. 

The coupling was performed overnight at room temperature and at 1400 rpm. Finally, 

NPs (fluorescent near infra-red polystyrene NPs, referred in the main text as Cy5-NPs) 

were Fmoc deprotected with 20 % piperidine in DMF (x3) and two times washed with 

DMF. Culture suitable NPs were obtained by washing steps with methanol, ethanol, 70 

% ethanol and resuspention in sterile water. The stability of the Cy5-NPs incubated in 

culture media over a period of time of 7 days at 37ºC was monitored using flow 

cytometry.   

 

Determination of fluorescent NPs concentration (NPs per microliter) by 

spectrophotometric method. 

Fluorescent NPs concentration (NPs per microliter) was determined by a 

spectrophotometric method as described previously by Unciti-Broceta JD et al. [18].   
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Fluorescent NPs uptake study by flow cytometry 

Adherents cell lines were washed with phosphate buffered saline (PBS 1X), detached 

with trypsin/EDTA (0.25%, phenol red) (Gibco), counted and diluted with media to a 

final concentration of 10
5
 cells per mL. 500 µL of each cell line suspension were plated 

in 24 well plates (Nunc) and incubated for 18 h. Then, media was replaced with 500 µL 

of fresh media mixture containing specific number of Fluorescent NPs. The cells were 

incubated with the fluorescent NPs at the established incubation times in a humidified 

incubator at 5% CO2 and 37ºC. As control were used naked NPs (at the specific ratio 

cell/NPs), and cells without nanoparticles treatment. Suspension cells were harvested, 

washed with PBS1X, counted and diluted with serum free media to a final concentration 

1x10
6
 cells per mL. 600 µL of each cell line suspension were placed in 1.5 mL conical 

culture tube (Eppendorf). Then, the specific number of Fluorescent NPs was added and 

cells were incubated in a humidified incubator at 5% CO2 and 37ºC. There were studied 

the same ratios cell:fluorescent NPs and incubation times that in adherent cell lines, 

using the controls described above. 

After incubation with Fluorescent NPs, for adherent cells, the media was aspirated and 

cells were washed with PBS 1X, and detached with Trypsin-EDTA (0.25%) at 37º C for 

5 minutes; for suspension cells, the media was removed by centrifugation and once 

washed with PBS 1X. In the case of suspension hard-to-transfect cells, additional wash 

step adding a reducing agent (tris(2-carboxyethyl)phosphine, Fluorochem) was done in 

order to quench possible binding nanoparticles in the membrane extracellular side, 

avoiding fluorescence interference from unincorporated NPs. Then, each sample was 

fixed in 2% paraformaldehyde (PFA) at room temperature for 10 minutes and protected 

from the light. Samples were analyzed via flow cytometry with a FACSCanto II flow 
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cytometer (Becton Dickinson & Co., NJ, USA). Each experiment was done in duplicate 

per ratio and incubation time and repeated three times per cell line. 

 

Fluorescent NPs uptake study by confocal microscopy 

Cells were plated into glass poly-L-lysine-coated coverslips (Neuvitro) in 24 well plates 

and incubated for 12 h. Then, media was replaced with a fresh media mixture containing 

Cy5-NPs and cells without nanoparticles treatment were used as controls. Following 30 

minutes of incubation with Cy5-NPs, the media was aspirated and cells were washed 

with PBS 1X, and fixed in 4% paraformaldehyde (PFA) at room temperature for 

30 minutes. Fixed cells were washed with PBS 1X and coverslips were mounted with 

ProLong Gold antifade mountant with DAPI (Life technologies). Image acquisition 

using fixed cells was performed with Confocal Scanning Microscope Zeiss LSM 710 

Axio Observer (Carl Zeiss, Jena, Germany). Images were acquired using Objective 

Plan-Apochromat 63x/1.40 Numerical Aperture OIL DIC M27 and Zen 2010 (Carl 

Zeiss, Jena, Germany). Images were processed Image J versión 1.49b software.  Each 

experiment was done in triplicate and repeated two times per cell line. 

 

Cell-Cycle Distribution Measurements  

Cell cycle analysis by quantitation of DNA content was performed using propidum 

iodide. Cells were harvested, washed twice with PBS, and fixed with 70% cold ethanol.  

After  overnight  refrigeration  at -20ºC,  cells were washed again with PBS and cell  

nuclei  were  stained  for  15 min  in  the  dark  with 50 μg/mL propidium iodide 

containing 100 U/ml of ribonuclease A,  and added into a flow cytometry tube. DNA 

content was measured by flow cytometry (BD FACS Canto II) and the percentages of 



17 

cells in the G0/G1, S and G2/M phases were determined from DNA content histograms 

using FlowJo software. 

Nanoparticle cytotoxicity assay 

Cells were properly disposed to nanoparticle incubation as described above, using 

1:25000 and 1:50000 cell:NPs ratio and 30 minutes of nanofection. After that, untreated 

and nanofected cells were plated and maintained using appropriate culture conditions 

for each cell line. After 7 days of culture yellow tetrazolium salt (3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide; Sigma) assay was used for 

evaluation of NP cytotoxicity, following manufacturer instructions. Data is represented 

as the percentage mean relative to control optical density/control group ± s.e.m. Each 

experiment was done in six replicates and repeated two times per cell line. 

In vitro lymphocyte proliferation assay 

Peripheral blood mononuclear cells (PMBCs) were provided from cell bank of the 

Centre for Scientific Instrumentation (CIC) of the University of Granada. Cryovials of 

PMBC were thawed according to manufacture instructions. Cells were resuspended in 

free serum DMEM at 1x10
6
 cell/mL, and incubated 1 hour at 37ºC horizontally.

Monocytes were adherent to plastic flask and lymphocytes were collected from culture. 

After collecting lymphocytes from PBMC isolated cells, concentration was adjusted to 

1x10
6 

cells/mL and labelled with 25000 NP added per cell for 30 minutes at 37°C.

Following washing steps, Cy5-NPs-labeled cells were resuspended in culture medium 

and divided into proliferating and resting cells. PHA-P was added to culture media in a 

final concentration of 2%. Cell proliferation was examined on days 0, 3, 5, and 7 after 

nanofection. Cy5-NP-labeled, unstimulated cells as a control, as well as stimulated cells 
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(both unlabeled and Cy5-NP-labeled) were analysed by flow cytometry. CFSE assay 

was performed according to the manufacturer’s instructions as a control of monitoring 

proliferation lymphocyte model assay. Experiment was performed in quadruplicate from 

four independent PMBC batch. 

Flow cytometry analysis 

Dot plots and cytometry statistics were obtained using FlowJo software (Percentage of 

positive population and median of fluorescence intensity -MFI-) and FACS DiVa 

Software (BD Biosciences). Graphs and statistical difference data were performed using 

GraphPad Software according to the following explanation. Percentage data of cells 

containing Cy5-NPs were represented versus cell/Cy5-NPs ratio in a bar representation, 

and statistical significant differences were stabilised by two-way ANOVA Bonferroni's 

multiple comparison test in the different treatments between the same cell lines. 

Furthermore, median fluorescence intensity (MFI) was exhaustive analyzed comparing 

the MFI increment (ΔMFI, MFI sample/MFI untreated). Two-way ANOVA 

Bonferroni's multiple comparison test was applied to study statistical significance. A p-

value of ≤ 0.05 was considered significant. Results are given as means ± standard error 

of the mean (SEM). Sample size, which indicates experimental replicates from a single 

representative experiment, was 3 unless otherwise specified. The results of all 

experiments were validated by independent repetitions. 


