
Inkjet fabrication of hydrogel microarrays using in situ nanolitre-scale

polymerisationw

Rong Zhang, Albert Liberski, Ferdous Khan, Juan Jose Diaz-Mochon and Mark Bradley*

Received (in Cambridge, UK) 20th November 2007, Accepted 19th December 2007

First published as an Advance Article on the web 11th January 2008

DOI: 10.1039/b717932d

Polymer hydrogel microarrays were fabricated by inkjet printing

of monomers and initiator, allowing up to 1800 individual

polymer features to be printed on a single glass slide.

Hydrogels, due to their intrinsic hydration properties have

huge potential, with applications in the area of tissue engineer-

ing,1–3 and cellular attachment/release.4,5 These flexible gels

have also been applied as thermally responsive micropumps/

valves,6 as components in sensors,7,8 as surface actuators9 and

for drug release.10

A multitude of techniques such as photolithography,11 soft

lithography,12–14 electron-beam lithography,15 nanolithogra-

phy16 and reactive ion etching17 have been used to generate

hydrogel patterns using for example crosslinked poly(2-hydro-

xyethyl methacrylate) (pHEMA), poly(polyethylene glycol)-

methacrylate and polyacrylamides, as well as non-synthetic

polymers such as collagen, with feature resolutions ranging

from nm’s to mm’s.

A key aspect in all these processes is the generation of the

hydrogel with photo-initiated polymerisation being perhaps

the most widely applied approach. This is typically achieved

by the irradiation of mixtures of monomers or oligomers with

initiators, often through a photomask or via the polymerisa-

tion of pre-stamped materials,2,3,5,6,11,13 although other poly-

merisation methods such as ATRP,18 plasma polymerization4

and redox initiated polymerization8,14 have all been reported.

These methods are generally used to fabricate patterns en

masse using single, well defined materials. Patterning tens,

hundreds or thousands of different materials on a single glass

slide remains a huge challenge. Langer and co-workers19

approached this problem by printing pre-mixed formulations

of different monomers on glass slides (coated with pHEMA),

using a DNA contact printer, which were then polymerised by

UV irradiation, the rapid evaporation of small droplets

(printed on the slides) necessitating the use of non-volatile

monomers. Our group used an alternative approach via the

contact printing of pre-formed polymers onto cytophobic

(agarose coated) slides to generate well defined polymer

microarrays.20

Recently an inkjet printing approach was used by our group

to prepare, in a high-throughput and highly miniaturised

manner, 231 formulations of three independent liquid crys-

tals.21 Here we report the use of an inkjet based approach for

the rapid preparation of patterned hydrogel microarrays on

glass slides, through the use of in situ pico-nano litre-scale

polymerisation (see Scheme 1).z
The approach used an inkjet printer to rapidly print (in-

dependently) both an initiator (ammonium persufate (APS))

and monomers that contained the reductant N,N,N0,N0-tetra-

methylethylenediamine (TEMED) onto glass slides at highly

defined positions, with specific numbers of drops printed in

any defined position on the array. This APS/TEMED redox

system is well established and is able to initiate polymerisation

and gelation of many water-soluble acrylamides and acrylates

under a range of conditions.22

To prepare arrays of polymers the glass slide was initially

treated with 3-(trimethoxysilyl)methacrylate in order to pro-

vide an anchor for the hydrogel during polymerisation (see

ESIw for details). Arrays were prepared in two ways. Firstly,

37 pre-generated mixtures of monomers (Fig. 1) were printed

and polymerised (20 copies of each feature were printed)

giving 740 features in total (see ESI,w Fig. S1). Polymerisation

gave excellent spot morphologies due to the non-contact

nature of the deposition (see Fig. 2).

In this array dimethylacrylamide was the major monomer

copolymerised with a range of other monomers bearing amino

groups with various crosslinkers with different chain length,

potentially allowing the amino group to be used as handles for

further chemistry.23 These hydrogel arrays were analysed dry

Scheme 1 The two approaches used for inkjetting hydrogel micro-
array in situ pico–nano litre polymerisation.
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and in DMF and water (Fig. 2) demonstrating their unifor-

mity and their swelling.

The size of the features was controlled by changing the

number of drops printed per spot. Using four drops per spot

366 features cm�2 could be printed (with a pitch between spots

of 500 mm) and a spot size of 210 � 10 mm (Fig. 3).

The second approach used the printing of a series of

monomers (rather than pre-formed mixtures of monomers)

that could be over-printed, allowing spot-to-spot based fabri-

cation of polymers. As a demonstration 36 polymers were

synthesised at high density (366 features cm�2) in situ with 15

copies of each polymer being printed (see ESIw for details).

Fig. 4 shows an example of an in situ synthesized polymer

microarray.

To ensure that the over-mixing procedure induced signifi-

cant turbulence in the spots the mixing time was analysed and

demonstrated to be less than 1.5 min (see Fig. 5).

It was important to show that the polymers prepared via this

microarray approach were analogous to those prepared using

more conventional conditions. To this end polymers were

synthesized (without cross-linkers) on both glass slides (print-

ing 200 features) and under identical conditions in glass vials.

The polymers were dissolved and characterised via GPC (see

ESIw for details). Table 1 shows the average molecular weight

and polydispersity of the linear poly(dimethylacrylamide-co-

acrylamide) formed on the slides and under more conventional

conditions, with Mw ranging from (3.7–8.2) � 105 Da (on the

slide) to (3.3–12) � 105 Da (under more conventional condi-

tions). The polymers prepared directly on the slides had a PDI

ranging from 6.1–8.8 as APS increased from 0.5 wt% (APS :

monomer = 1 : 56) to 4.76 wt% (APS : monomer = 1 : 5.8)

very similar to the PDI of the polymers polymerised in the

glass vials (ranging from 3.3 to 9.8), demonstrating that

virtually identical hydrogels were prepared on both formats.

In conclusion the fabrication of hydrogel microarrays using

a redox initiator system and inkjet printing is reported, allow-

ing potentially 1800 new polymers to be prepared, while the

non-contact nature of the printing approach gives excellent

Fig. 1 The monomers used for the fabrication of the hydrogel

microarrays (for the combinations used see ESIw (Table S1)).

Fig. 2 Phase contrast microscopy images of hydrogel spots of

samples A and B: (1) dried spot; (2) swollen in DMF and (3) swollen

in water (A = DMA–EOA–PEG12DA (ratio 5.2 : 1.7 : 2, 20% w/w)

and B = DMA–AAm–MBA (ratio 4.3 : 3.5 : 1, 11% w/w)). An

autodrop 70 mm pipette was used for printing with a controlled relative

humidity of 73%.

Fig. 3 (A) An image of a hydrogel microarray slide. (B) The variation

of spot diameter with the number of drops printed (monomers =

DMA, AAm and PEG12DA in a ratio of 6.1 : 1.7 : 1, 19.5% w/w) (see

ESIw). (C) A high-density hydrogel microarray with 1800 spots printed

in an area of 4.2 cm2 (scanned using a fluorescent microscope with a

FITC filter (polymers were autofluorescent)).

Fig. 4 An image of an in situ synthesized hydrogel microarray printed

on a glass slide. A size comparison is made with a five-pence coin. The

left image is of a single dried feature taken by a phase contrast

microscope (100 mm scale bar). In this case initiator (APS) was first

printed on the slide followed by the step-wise printing of one monomer

on top of another (see ESIw for details).
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spot morphology and size control. This approach allows

access to a broad ranges of new polymers in a highly minia-

turised manner and will be applicable to many research areas,

such as cellular immobilisation, identification of cell specific

hydrogels, or protein trapping, while allowing the properties

of many polymers to be investigated without having to resort

to large-scale synthesis.24
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Notes and references

z The inkjet printer used in this experiment was an autodrop system
(Microdrop, GmbH, Norderstedt, Germany) with a AK-501 micro-
pipette operating in drop-on-demand mode via a piezoelectric firing
mechanism.21 This printer created droplets with a volume of approxi-
mately 380 pL at frequencies between 0 and 2 kHz using a strobo-
scopic camera to monitor droplet formation, allowing accurate control
of the volume of the printed solutions by simply varying the number of

drops printed in any specific or defined location. This was controlled
by use of an in-house macro.
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Fig. 5 An image of a hydrogel feature prepared by co-printing 25

drops of a 1% w/w APS aqueous solution with 12 drops of a mixture

of DMA, AAm and PEG12DA (ratio 6.1 : 1.7 : 1, 19.5% w/w). (A)

Fluorescent microscopic image taken using a Nikon Eclipse 50i

microscope with a rhodamine filter and (B) a white-light phase

contrast image of the same spot after washing.

Table 1 Molecular weight analysis of linear polymers prepared by
nanolitre synthesis on a glass slide compared to those prepared under
analogous solution conditions in vials. PDI is the polydispersity index
of the polymers

APS (% w/w) 0.50 0.99 2.90 4.76

Inkjet based spot synthesis Mn (�104) 7.71 5.72 6.16 9.33
Mw (�104) 52.29 43.51 37.72 82.37
PDI 6.78 7.61 6.13 8.83

Traditional synthesis Mn (�104) 10.25 8.11 9.36 10.21
Mw (�104) 33.42 35.87 80.39 98.35
PDI 3.30 4.45 8.59 9.76
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