7 research outputs found

    Sample4Geo: Hard Negative Sampling For Cross-View Geo-Localisation

    Full text link
    Cross-View Geo-Localisation is still a challenging task where additional modules, specific pre-processing or zooming strategies are necessary to determine accurate positions of images. Since different views have different geometries, pre-processing like polar transformation helps to merge them. However, this results in distorted images which then have to be rectified. Adding hard negatives to the training batch could improve the overall performance but with the default loss functions in geo-localisation it is difficult to include them. In this article, we present a simplified but effective architecture based on contrastive learning with symmetric InfoNCE loss that outperforms current state-of-the-art results. Our framework consists of a narrow training pipeline that eliminates the need of using aggregation modules, avoids further pre-processing steps and even increases the generalisation capability of the model to unknown regions. We introduce two types of sampling strategies for hard negatives. The first explicitly exploits geographically neighboring locations to provide a good starting point. The second leverages the visual similarity between the image embeddings in order to mine hard negative samples. Our work shows excellent performance on common cross-view datasets like CVUSA, CVACT, University-1652 and VIGOR. A comparison between cross-area and same-area settings demonstrate the good generalisation capability of our model

    Orientation-Guided Contrastive Learning for UAV-View Geo-Localisation

    Full text link
    Retrieving relevant multimedia content is one of the main problems in a world that is increasingly data-driven. With the proliferation of drones, high quality aerial footage is now available to a wide audience for the first time. Integrating this footage into applications can enable GPS-less geo-localisation or location correction. In this paper, we present an orientation-guided training framework for UAV-view geo-localisation. Through hierarchical localisation orientations of the UAV images are estimated in relation to the satellite imagery. We propose a lightweight prediction module for these pseudo labels which predicts the orientation between the different views based on the contrastive learned embeddings. We experimentally demonstrate that this prediction supports the training and outperforms previous approaches. The extracted pseudo-labels also enable aligned rotation of the satellite image as augmentation to further strengthen the generalisation. During inference, we no longer need this orientation module, which means that no additional computations are required. We achieve state-of-the-art results on both the University-1652 and University-160k datasets

    NeRFtrinsic Four: An End-To-End Trainable NeRF Jointly Optimizing Diverse Intrinsic and Extrinsic Camera Parameters

    Full text link
    Novel view synthesis using neural radiance fields (NeRF) is the state-of-the-art technique for generating high-quality images from novel viewpoints. Existing methods require a priori knowledge about extrinsic and intrinsic camera parameters. This limits their applicability to synthetic scenes, or real-world scenarios with the necessity of a preprocessing step. Current research on the joint optimization of camera parameters and NeRF focuses on refining noisy extrinsic camera parameters and often relies on the preprocessing of intrinsic camera parameters. Further approaches are limited to cover only one single camera intrinsic. To address these limitations, we propose a novel end-to-end trainable approach called NeRFtrinsic Four. We utilize Gaussian Fourier features to estimate extrinsic camera parameters and dynamically predict varying intrinsic camera parameters through the supervision of the projection error. Our approach outperforms existing joint optimization methods on LLFF and BLEFF. In addition to these existing datasets, we introduce a new dataset called iFF with varying intrinsic camera parameters. NeRFtrinsic Four is a step forward in joint optimization NeRF-based view synthesis and enables more realistic and flexible rendering in real-world scenarios with varying camera parameters

    Less Is More: Linear Layers on CLIP Features as Powerful VizWiz Model

    Full text link
    Current architectures for multi-modality tasks such as visual question answering suffer from their high complexity. As a result, these architectures are difficult to train and require high computational resources. To address these problems we present a CLIP-based architecture that does not require any fine-tuning of the feature extractors. A simple linear classifier is used on the concatenated features of the image and text encoder. During training an auxiliary loss is added which operates on the answer types. The resulting classification is then used as an attention gate on the answer class selection. On the VizWiz 2022 Visual Question Answering Challenge we achieve 60.15 % accuracy on Task 1: Predict Answer to a Visual Question and AP score of 83.78 % on Task 2: Predict Answerability of a Visual Question.Comment: VizWiz Grand Challenge: Describing Images and Videos Taken by Blind People (CVPR Workshop 2022

    SoccerNet 2023 challenges results

    No full text
    SoccerNet 2023 Challenges ResultsThe SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet

    Stratospheric ozone: An introduction to its study

    No full text
    info:eu-repo/semantics/publishe
    corecore