111 research outputs found

    Maternal diet and gut microbiome composition modulate early-life immune development.

    Get PDF
    In early life, the intestinal mucosa and immune system undergo a critical developmental process to contain the expanding gut microbiome while promoting tolerance toward commensals, yet the influence of maternal diet and microbial composition on offspring immune maturation remains poorly understood. We colonized germ-free mice with a consortium of 14 strains, fed them a standard fiber-rich chow or a fiber-free diet, and then longitudinally assessed offspring development during the weaning period. Unlike pups born to dams fed the fiber-rich diet, pups of fiber-deprived dams demonstrated delayed colonization with Akkermansia muciniphila, a mucin-foraging bacterium that can also use milk oligosaccharides. The pups of fiber-deprived dams exhibited an enrichment of colonic transcripts corresponding to defense response pathways and a peak in Il22 expression at weaning. Removal of A. muciniphila from the community, but maintenance on the fiber-rich diet, was associated with reduced proportions of RORγt-positive innate and adaptive immune cell subsets. Our results highlight the potent influence of maternal dietary fiber intake and discrete changes in microbial composition on the postnatal microbiome assemblage and early immune development

    Laparoscopic Partial Cystectomy for Urachal and Bladder Cancer

    Get PDF
    PURPOSE: To report our initial experiences with laparoscopic partial cystectomy for urachal and bladder malignancy. MATERIALS AND METHODS: Between March 2002 and October 2004, laparoscopic partial cystectomy was performed in 6 cases at 3 institutions; 3 cases were urachal adenocarcinomas and the remaining 3 cases were bladder transitional cell carcinomas. All patients were male, with a median age of 55 years (45-72 years). Gross hematuria was the presenting symptom in all patients, and diagnosis was established with trans-urethral resection bladder tumor in 2 patients and by means of cystoscopic biopsy in the remaining 4 patients. Laparoscopic partial cystectomy was performed using the transperitoneal approach under cystoscopic guidance. In each case, the surgical specimen was removed intact entrapped in an impermeable bag. One patient with para-ureteral diverticulum transitional cell carcinoma required concomitant ureteral reimplantation. RESULTS: All six procedures were completed laparoscopically without open conversion. The median operating time was 110 minutes (90-220) with a median estimated blood loss of 70 mL (50-100). Frozen section evaluations of bladder margins were routinely obtained and were negative for cancer in all cases. The median hospital stay was 2.5 days (2-4) and the duration of catheterization was 7 days. There were no intraoperative or postoperative complications. Final histopathology confirmed urachal adenocarcinoma in 3 cases and bladder transitional cell carcinoma in 3 cases. At a median follow-up of 28.5 months (range: 26 to 44 months), there was no evidence of recurrent disease as evidenced by radiologic or cystoscopic evaluation. CONCLUSIONS: Laparoscopic partial cystectomy in carefully selected patients with urachal and bladder cancer is feasible and safe, offering a promising and minimally invasive alternative for these patients

    Gajah. Securing the Future for Elephants in India.

    Get PDF
    It is estimated that six in every ten wild Asian elephants live in India. This report by the Ministry of Environment and Forests in India outlines plans to safeguard the species and associated habitats in the face of rapid economic expansion and development pressures

    Deprivation of dietary fiber in specific-pathogen-free mice promotes susceptibility to the intestinal mucosal pathogen Citrobacter rodentium.

    Get PDF
    peer reviewedThe change of dietary habits in Western societies, including reduced consumption of fiber, is linked to alterations in gut microbial ecology. Nevertheless, mechanistic connections between diet-induced microbiota changes that affect colonization resistance and enteric pathogen susceptibility are still emerging. We sought to investigate how a diet devoid of soluble plant fibers impacts the structure and function of a conventional gut microbiota in specific-pathogen-free (SPF) mice and how such changes alter susceptibility to a rodent enteric pathogen. We show that absence of dietary fiber intake leads to shifts in the abundances of specific taxa, microbiome-mediated erosion of the colonic mucus barrier, a reduction of intestinal barrier-promoting short-chain fatty acids, and increases in markers of mucosal barrier integrity disruption. Importantly, our results highlight that these low-fiber diet-induced changes in the gut microbial ecology collectively contribute to a lethal colitis by the mucosal pathogen Citrobacter rodentium, which is used as a mouse model for enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Our study indicates that modern, low-fiber Western-style diets might make individuals more prone to infection by enteric pathogens via the disruption of mucosal barrier integrity by diet-driven changes in the gut microbiota, illustrating possible implications for EPEC and EHEC infections

    Metabolite-based inter-kingdom communication controls intestinal tissue recovery following chemotherapeutic injury

    Get PDF
    Cytotoxic chemotherapies have devastating side effects, particularly within thegastrointestinal tract. Gastrointestinal toxicity includes death and damage of the epitheliumand an imbalance in the intestinal microbiota, otherwise known as dysbiosis. Whetherdysbiosis is a direct contributor to tissue toxicity is a key area of focus. Here, from bothmammalian and bacterial perspectives, we uncover an intestinal epithelial celldeath-Enterobacteriaceae signaling axis that fuels dysbiosis. Specifically, our datademonstrate that chemotherapy-induced epithelial cell apoptosis, and the purine-containingmetabolites released from dying cells, drives the inter-kingdom transcriptional re-wiring of theEnterobacteriaceae, including fundamental shifts in bacterial respiration and promotion ofpurine utilization-dependent expansion, which in turn delays the recovery of the intestinal tract.Inhibition of epithelial cell death or restriction of the Enterobacteriaceae to homeostatic levelsreverses dysbiosis and improves intestinal recovery. These findings suggest that supportivetherapies that maintain homeostatic levels of Enterobacteriaceae may be useful in resolvingintestinal disease

    A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility.

    Get PDF
    Despite the accepted health benefits of consuming dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic mouse model, in which animals were colonized with a synthetic human gut microbiota composed of fully sequenced commensal bacteria, we elucidated the functional interactions between dietary fiber, the gut microbiota, and the colonic mucus barrier, which serves as a primary defense against enteric pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation, together with a fiber-deprived, mucus-eroding microbiota, promotes greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium. Our work reveals intricate pathways linking diet, the gut microbiome, and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics

    Contemporary Challenges and Solutions

    Get PDF
    CA18131 CP16/00163 NIS-3317 NIS-3318 decision 295741 C18/BM/12585940The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 “ML4Microbiome” that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies.publishersversionpublishe

    Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Summary: Background Documentation of patterns and long-term trends in mortality in young people, which reflect huge changes in demographic and social determinants of adolescent health, enables identification of global investment priorities for this age group. We aimed to analyse data on the number of deaths, years of life lost, and mortality rates by sex and age group in people aged 10–24 years in 204 countries and territories from 1950 to 2019 by use of estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We report trends in estimated total numbers of deaths and mortality rate per 100 000 population in young people aged 10–24 years by age group (10–14 years, 15–19 years, and 20–24 years) and sex in 204 countries and territories between 1950 and 2019 for all causes, and between 1980 and 2019 by cause of death. We analyse variation in outcomes by region, age group, and sex, and compare annual rate of change in mortality in young people aged 10–24 years with that in children aged 0–9 years from 1990 to 2019. We then analyse the association between mortality in people aged 10–24 years and socioeconomic development using the GBD Socio-demographic Index (SDI), a composite measure based on average national educational attainment in people older than 15 years, total fertility rate in people younger than 25 years, and income per capita. We assess the association between SDI and all-cause mortality in 2019, and analyse the ratio of observed to expected mortality by SDI using the most recent available data release (2017). Findings In 2019 there were 1·49 million deaths (95% uncertainty interval 1·39–1·59) worldwide in people aged 10–24 years, of which 61% occurred in males. 32·7% of all adolescent deaths were due to transport injuries, unintentional injuries, or interpersonal violence and conflict; 32·1% were due to communicable, nutritional, or maternal causes; 27·0% were due to non-communicable diseases; and 8·2% were due to self-harm. Since 1950, deaths in this age group decreased by 30·0% in females and 15·3% in males, and sex-based differences in mortality rate have widened in most regions of the world. Geographical variation has also increased, particularly in people aged 10–14 years. Since 1980, communicable and maternal causes of death have decreased sharply as a proportion of total deaths in most GBD super-regions, but remain some of the most common causes in sub-Saharan Africa and south Asia, where more than half of all adolescent deaths occur. Annual percentage decrease in all-cause mortality rate since 1990 in adolescents aged 15–19 years was 1·3% in males and 1·6% in females, almost half that of males aged 1–4 years (2·4%), and around a third less than in females aged 1–4 years (2·5%). The proportion of global deaths in people aged 0–24 years that occurred in people aged 10–24 years more than doubled between 1950 and 2019, from 9·5% to 21·6%. Interpretation Variation in adolescent mortality between countries and by sex is widening, driven by poor progress in reducing deaths in males and older adolescents. Improving global adolescent mortality will require action to address the specific vulnerabilities of this age group, which are being overlooked. Furthermore, indirect effects of the COVID-19 pandemic are likely to jeopardise efforts to improve health outcomes including mortality in young people aged 10–24 years. There is an urgent need to respond to the changing global burden of adolescent mortality, address inequities where they occur, and improve the availability and quality of primary mortality data in this age group

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Basic considerations in the dermatokinetics of topical formulations

    Get PDF
    Assessing the bioavailability of drug molecules at the site of action provides better insight into the efficiency of a dosage form. However, determining drug concentration in the skin layers following topical application of dermatological formulations is a great challenge. The protocols followed in oral formulations could not be applied for topical dosage forms. The regulatory agencies are considering several possible approaches such as tape stripping, microdialysis etc. On the other hand, the skin bioavailability assessment of xenobiotics is equally important for topical formulations in order to evaluate the toxicity. It is always possible that drug molecules applied on the skin surface may transport thorough the skin and reaches systemic circulation. Thus the real time measurement of molecules in the skin layer has become obligatory. In the last two decades, quite a few investigations have been carried out to assess the skin bioavailability and toxicity of topical/dermatological products. This review provides current understanding on the basics of dermatokinetics, drug depot formation, skin metabolism and clearance of drug molecules from the skin layers following application of topical formulations
    corecore