294 research outputs found

    Gastric carcinoma in Durban's Indian population

    Get PDF
    Histologlcally proven gastric carcinoma was studied to establish the incidence and pattern of the disease In the Indian population of Durban. The Incidence In this population wasfound to be low, 6,9/100000/year. Over a 7-year period (1980 - 1986) 115 patients were treated for gastric carcinoma at R. K. Khan Hospital. There was a male preponderance, and the average age at presentation was 56 years. The commonest presenting symptoms were dyspepsia and vomiting, and the majority of patients presented with advanced disease. Only a third underwent resection, a third had no treatment, and a third underwent palliative bypass or laparotomy only. The majority of patients who had a palliative bypass or no treatment died within 9 months. The 5-year survival rate for patients undergoing curative resection was 38% and for palliative resection 9%. To Improve survival, emphasis must be on early diagnosis and it is recommended that any patient with dyspepsia who is over the age of 30 years should have an endoscopic investigation

    Technical Bulletin No. 23

    Get PDF
    Not AvailableNot AvailableNot Availabl

    Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    Get PDF
    Ajuts: we thank the support of KIT IMK-IFU, the University of Wisconsin sabbatical leave program, and the Helmholtz Society/MICMOR fellowship program. We also thank the DWD for German weather data. Phenology data were provided by the members of the PEP725 project. We are indebted to the providers and funders of the eddy covariance flux tower observations, the FLUXNET program, and its database. The sites in Graswang, Rottenbuch and Fendt belong to the TERENO and ICOS-ecosystems networks, funded by Bundesministerium für Bildung und Forschung(BMBF)and the Helmholtz Association. The modeling study of SOLVEG was partially supported by Grant-in-Aid for Scientific Research, no. 21120512, provided by the Japan Society for the Promotion of Science(JSPS). This study was financially supported by the Austrian National Science Fund(FWF) under contract P26425 to GW.Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies

    Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    Get PDF
    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies

    Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites

    Get PDF
    We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high correlation among methods (R between .89 and .94), but a spread in magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC‐based T estimates show higher correlation to sap flow‐based T than EC‐based ET. The partitioning methods show expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high‐quality estimates for at least two continuous years shows that T/ET variability was 1.6 times higher across sites than across years. Spatial variability of T/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understanding T globally, while the magnitudes remain uncertain. Our results represent the first extensive EC data‐based estimates of ecosystem T permitting a data‐driven perspective on the role of plants’ water use for global water and carbon cycling in a changing climate.We acknowledge insightful discussions with Dario Papale and apologize for having a cappuccino after lunch. We further acknowledge Ulrich Weber for preparing the cappuccino. M.G. acknowledges funding by Swiss National Science Foundation project ICOS‐CH Phase 2 20FI20_173691. L.Š. was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the CzeCOS program, grant number LM2015061, and by SustES‐Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797). G.W. acknowledges support by the Austrian National Science Fund (FWF, project I03859) and the Province of South Tyrol (“Cycling of carbon and water in mountain ecosystems under changing climate and land use”). R.P. was supported by grants CGL2014‐55883‐JIN, RTI2018‐095297‐J‐I00 (Spain), and by a Humboldt Research Fellowship for Experienced Researchers (Germany). This work used eddy covariance data acquired and shared by the FLUXNET community, including these networks: Ameri‐Flux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet‐Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux‐TERN, TCOS‐Siberia, and USCCC. The ERA‐Interim reanalysis data are provided by ECMWF and processed by LSCE. The FLUXNET eddy covariance data processing and harmonization was carried out by the European Fluxes Database Cluster, AmeriFlux Management Project, and Fluxdata project of FLUXNET, with the support of CDIAC and ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux, and AsiaFlux offices. Open access funding enabled and organized by Projekt DEAL

    Data-based perfect-deficit approach to understanding climate extremes and forest carbon assimilation capacity

    Get PDF
    Several lines of evidence suggest that the warming climate plays a vital role in driving certain types of extreme weather. The impact of warming and of extreme weather on forest carbon assimilation capacity is poorly known. Filling this knowledge gap is critical towards understanding the amount of carbon that forests can hold. Here, we used a perfect-deficit approach to identify forest canopy photosynthetic capacity (CPC) deficits and analyze how they correlate to climate extremes, based on observational data measured by the eddy covariance method at 27 forest sites over 146 site-years. We found that droughts severely affect the carbon assimilation capacities of evergreen broadleaf forest (EBF) and deciduous broadleaf forest. The carbon assimilation capacities of Mediterranean forests were highly sensitive to climate extremes, while marine forest climates tended to be insensitive to climate extremes. Our estimates suggest an average global reduction of forest CPC due to unfavorable climate extremes of 6.3 Pg C (~5.2% of global gross primary production) per growing season over 2001–2010, with EBFs contributing 52% of the total reduction

    DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang

    Get PDF
    We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically confirmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1.861 (a lookback time of ∼10 Gyr) and peaking at MAB = −22.3 ± 0.1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400–3500 Å) properties of the SN, finding velocity of the C III feature changes by ∼5600 km s−1 over 14 d around maximum light. We find the host galaxy of DES15E2mlf has a stellar mass of 3.5+3.6 −2.4 × 109 M, which is more massive than the typical SLSN-I host galaxy

    The first Hubble diagram and cosmological constraints using superluminous supernovae

    Get PDF
    This paper has gone through internal review by the DES collaboration. It has Fermilab preprint number 19-115-AE and DES publication number 13387. We acknowledge support from EU/FP7- ERC grant 615929. RCN would like to acknowledge support from STFC grant ST/N000688/1 and the Faculty of Technology at the University of Portsmouth. LG was funded by the European Union’s Horizon 2020 Framework Programme under the Marie Skłodowska- Curie grant agreement no. 839090. This work has been partially supported by the Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ ˜ao Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico and the Minist´erio da Ciˆencia, Tecnologia e Inovac¸ ˜ao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol ´ogicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgen¨ossische Technische Hochschule (ETH) Z¨urich, Fermi NationalAccelerator Laboratory, theUniversity of Illinois atUrbana- Champaign, the Institut de Ci`encies de l’Espai (IEEC/CSIC), the Institut de F´ısica d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universit¨at M¨unchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV- 2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.We acknowledge support from the Australian Research Council Centre of Excellence for All-skyAstrophysics (CAASTRO), through project number CE110001020, and the Brazilian Instituto Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). This paper has been authored by Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with theU.S.Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the paper for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for United States Government purposes.We present the first Hubble diagram of superluminous supernovae (SLSNe) out to a redshift of two, together with constraints on the matter density, M, and the dark energy equation-of-state parameter, w(≡p/ρ). We build a sample of 20 cosmologically useful SLSNe I based on light curve and spectroscopy quality cuts. We confirm the robustness of the peak–decline SLSN I standardization relation with a larger data set and improved fitting techniques than previous works. We then solve the SLSN model based on the above standardization via minimization of the χ2 computed from a covariance matrix that includes statistical and systematic uncertainties. For a spatially flat cold dark matter ( CDM) cosmological model, we find M = 0.38+0.24 −0.19, with an rms of 0.27 mag for the residuals of the distance moduli. For a w0waCDM cosmological model, the addition of SLSNe I to a ‘baseline’ measurement consisting of Planck temperature together with Type Ia supernovae, results in a small improvement in the constraints of w0 and wa of 4 per cent.We present simulations of future surveys with 868 and 492 SLSNe I (depending on the configuration used) and show that such a sample can deliver cosmological constraints in a flat CDM model with the same precision (considering only statistical uncertainties) as current surveys that use Type Ia supernovae, while providing a factor of 2–3 improvement in the precision of the constraints on the time variation of dark energy, w0 and wa. This paper represents the proof of concept for superluminous supernova cosmology, and demonstrates they can provide an independent test of cosmology in the high-redshift (z > 1) universe.EU/FP7-ERC grant 615929STFC grant ST/N000688/1Faculty of Technology at the University of PortsmouthEuropean Union’s Horizon 2020 Framework Programme under the Marie Skłodowska- Curie grant agreement no. 839090Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER)U.S. Department of EnergyU.S. National Science FoundationMinistry of Science and Education of SpainScience and Technology Facilities Council of the United KingdomHigher Education Funding Council for EnglandNational Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign,Kavli Institute of Cosmological Physics at the University of ChicagoCenter for Cosmology and Astro-Particle Physics at the Ohio State UniversityMitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacão Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciencia, Tecnologia e InovacãoDeutsche ForschungsgemeinschaftCollaborating Institutions in the Dark Energy Survey.National Science Foundation under grant numbers AST-1138766 and AST-1536171.T MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV- 2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union.CERCA program of the Generalitat de Catalunya.European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.Australian Research Council Centre of Excellence for All-skyAstrophysics (CAASTRO), through project number CE110001020Brazilian Instituto Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2)Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with theU.S.Department of Energy, Office of Science, Office of High Energy Physic
    corecore