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Abstract
Several lines of evidence suggest that the warming climate plays a vital role in driving certain
types of extreme weather. The impact of warming and of extreme weather on forest carbon
assimilation capacity is poorly known. Filling this knowledge gap is critical towards
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understanding the amount of carbon that forests can hold. Here, we used a perfect-deficit
approach to identify forest canopy photosynthetic capacity (CPC) deficits and analyze how they
correlate to climate extremes, based on observational data measured by the eddy covariance
method at 27 forest sites over 146 site-years. We found that droughts severely affect the carbon
assimilation capacities of evergreen broadleaf forest (EBF) and deciduous broadleaf forest. The
carbon assimilation capacities of Mediterranean forests were highly sensitive to climate
extremes, while marine forest climates tended to be insensitive to climate extremes. Our
estimates suggest an average global reduction of forest CPC due to unfavorable climate extremes
of 6.3 Pg C (∼5.2% of global gross primary production) per growing season over 2001–2010,
with EBFs contributing 52% of the total reduction.

S Online supplementary data available from stacks.iop.org/ERL/9/065002/mmedia

Keywords: climate extremes, drought, carbon assimilation capacity, perfect-deficit approach,
forests

1. Introduction

Forests store ∼45% of terrestrial carbon (∼1600 Pg C), con-
tributing ∼50% of terrestrial net primary production
(Bonan 2008) and making them significant carbon sinks that
can mitigate global warming (Nemani et al 2003, Gielen
et al 2013), an effect which may be dampened by changing
climate (Cox et al 2000, Friedlingstein et al 2006, Zhao and
Running 2010, Yi et al 2010, 2013). The 2003 heat wave and
drought reduced Europe’s gross primary production (GPP) by
30%, which reversed the effect of four years of net carbon
sequestration (Ciais et al 2005). It is expected that such
extreme events will increase in frequency and intensity
(Meehl, Tebaldi 2004, Mu et al 2011, Trenberth 2012).
Studying the impacts of climate extremes on the carbon cycle
of forests is important to understand carbon-climate feedback
mechanisms because even a small shift in the frequency or
severity of climate extremes may result in positive feedback
to climate warming (Allen et al 2010, Serrano et al 2013).
However, investigations into the impacts of climate extremes
on the carbon cycle are still at the rudimentary level. In this
study, we applied the perfect-deficit approach of Yi et al
(2012) to identify extreme values of canopy photosynthetic
capacity (CPC) and climate variables from flux tower data.
The daily CPC is calculated as the maximum rate of GPP of
the day from FLUXNET tower data at 30 min resolution.
CPC forms an upper boundary for the instantaneous canopy
photosynthetic rates for a specific site-year. It is hypothesized
that ecosystem carbon assimilation capacity is only con-
strained by climate conditions, and thus a perfect CPC
(PCPC) is defined as a measure of the maximum carbon
assimilation potential for a site given site-specific ‘perfect’
climate conditions for a particular day of the year over the
years for which data were sampled. Deficits of CPC can be
readily identified by subtracting CPC curve from the PCPC
curve.

We introduced three indices (duration, intensity and
severity) to quantitatively evaluate extreme climate impacts
on forests carbon assimilation capacity, indicated by CPC
deficits. Principal component analysis (PCA) was applied to
identify the driving forces of climate-related carbon assim-
ilation reduction.

We used 27 forest sites from Europe, North America and
South America, each with at least four years of continuous
carbon and water flux records. The represented ecosystem
types include evergreen broadleaf forests (EBF), deciduous
broadleaf forests (DBF), evergreen needleleaf forests (ENF)
and mixed forests (MF). We also utilize the MODIS GPP and
land cover datasets covering 2001–2010 to determine the
spatial context of changes in forest carbon assimilation at the
global scale. Key objectives of this study were: (1) identify
the site-inherent ‘perfect’ conditions for maximal productivity
over the observational records; (2) discover patterns in dis-
ruption of forest carbon assimilation associated with climatic
extremes; and (3) expand the application of the method (Yi
et al 2012) geographically to large scale estimation of the
reduced carbon assimilation caused by climate extremes.

2. Methods

2.1. Sites and data

2.1.1. Flux tower data. We used data from the FLUXNET
‘La-Thuile’ database. Data have been processed in a standard
methodology described in Papale et al 2006. The data are
storage corrected and u* filtered. We used growing season
data (May–October) from 27 forest sites, including four EBF,
seven DBF, 13 ENF, and three MF (figure 1). These sites
have a minimum of four years of continuous (gap-filled)
records of GPP and meteorological variables, including
temperature (Ta), precipitation (P), net radiation (Rn), vapor
pressure deficit (VPD). GPP was partitioned from net
ecosystem exchange (NEE) based on nonlinear regression
algorithms (Reichstein et al (2005)). Evaporative fraction is
calculated from measured latent heat (LE) and sensible heat
(H). EF is represented by the ratio between LE and the sum of
sensible and LE fluxes: EF =LE/(LE +H), This can be also
written as EF =LE/(Rn−G), where Rn is net radiation, G is
ground heat flux, and Rn−G is available energy. If the near
soil surface moisture declines, less energy will be used for
vaporization, resulting in low EF. In contrast, if adequate
water is available for plants due to sufficient precipitation or
root access to groundwater, the amount of energy used for
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vaporization will increase, leading to high EF (Schwalm
et al 2010). Because of the synthetic nature of EF in
characterizing land surface conditions for soil moisture and
available energy for plant to use and evaporation, it has been
widely used as a drought index (Heim 2002, Nishida (2003)).
Here EF is the drought indicator in our analysis.

2.1.2. MODIS GPP and land cover. We used global monthly
GPP datasets (MOD17A2) provided by Zhao and Running
(2010). The MODIS GPP algorithm is used to calculate
global GPP with 0.05 × 0.05 degree spatial resolution over the
period 2001–2010. Land cover classification (MOD12C1) is
defined by the International Geosphere Biosphere Programme
(IGBP) global vegetation classification scheme. (https://
lpdaac.usgs.gov/products/modis_products_table/mcd12c1).
We masked the areas that are non-forested. ENF,
EBF, MF, and DBF were identified based the gridded land
cover. (http://www.mmnt.net/db/0/0/firecenter.umt.edu/pub/
NPP_Science_2010/Monthly_MOD17A2/GEOTIFF_0.05
degree).

2.2. CPC

2.2.1. Forest CPC and PCPC. The concept of CPC
represents the daily maximum carbon assimilation (Yi
et al 2012). The daily CPC of ecosystems was defined as
the maximum value of half-hourly GPP in a day, which was
derived from FLUXNET NEE data by nonlinear regression
(Reichstein et al 2005). A yearly CPC curve is constructed

from daily GPP data (figure 2(a)). This CPC curve forms an
upper boundary for the instantaneous canopy photosynthetic
rates, and the area under the CPC curve represents ecosystem
carbon assimilation potential—how much carbon dioxide
potentially can be assimilated by an ecosystem at a site in an
individual year. This data-based CPC is in good agreement
with modelled photosynthetic capacity (Amax) (figure 2(a),
modelling in details given in the online supplementary
materials available at (stacks.iop.org/ERL/9/065002/
mmedia). PCPC is defined as a measure of the maximum
carbon assimilation potential for a site given site-specific
‘perfect’ climate conditions for a particular day of the year
over the years for which data are available. The PCPC values
are calculated for each day of the year as the maximum CPC
recorded on that day across all available years of site data.
Thus, a PCPC curve of maximized carbon assimilation
potential can be constructed (figure 2(a)). The difference
between PCPC and CPC is defined as CPC deficit
(figure 2(a)). We investigate the relationship between
magnitudes of the CPC deficit of forests and their driving
forces.

2.2.2. MODIS GPP deficit. The perfect-deficit approach was
also applied to MODIS GPP datasets. The PCPC was
calculated as the maximum value of monthly GPP over the
years 2001–2010. The CPC deficits were calculated as the
difference between monthly PCPC and monthly CPC of
specific years.

Environ. Res. Lett. 9 (2014) 065002 S Wei et al

Figure 1. Spatial distribution of the studied forest sites. The forest types are shown in the legend. 27 Fluxnet forest sites were used in this
analysis, including four evergreen broadleaf forests (EBF), seven deciduous broadleaf forests (DBF), 13 evergreen needleleaf forests (ENF)
and three mixed forests (MF). These sites have a minimum of four years of continuous data of gross primary product (GPP), Temperature
(Ta), Precipitation (P), net radiation (Rn), Latent hear (Le) and Sensible heat (H).
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2.2.3. Climate potential index. We used a similar approach as
above to define climate drivers or drought proxies (Ta, Rn, P,
VPD, and EF). We extracted the yearly climatic potential
curve from the daily maximum observed value of each
climate variable for each site-year. Climatic envelopes were
defined as the maximum values for each day-of-year observed
from at least four continuous yearly records. Climatic drivers
are defined as differences between climatic potential and
climatic envelopes representing ‘perfect’ climate.

2.3. Extreme indices

2.3.1. Threshold value. The threshold levels of extremes
were defined by the relative monthly CPC deficit
Ri= (PCPCi−CPCi)/PCPCi, here the PCPCi is the ith
month PCPC (calculated by integrating daily PCPC), and
CPCi is ith month CPC (from integrating the daily CPC).

Based on sensitivity analysis (Supplementary figure 1),
Ri= 0.3 is used as a threshold value to identify extreme
CPC events. We did piecewise linear regression between Ri

and the fraction of months with relative CPC deficit greater
than Ri. The Ri = 0.3 is close to the break point between a line
with steep slope (more sensitive) to one with gentle slope
(less sensitive). In order to emphasize severe extreme events
and keep results less sensitive to the choice of Ri, we therefore
used Ri= 0.3 as the threshold value. The legitimateness of
using Ri= 0.3 as the threshold value in present paper is also
evidenced by previously published drought and heat wave
events that occurred in 2003 in Europe and caused significant
GPP reduction (Ciais et al 2005). These documented extreme
events can be identified by the choice of Ri = 0.3 as the
threshold value in our analysis.

2.3.2. CPC deficit duration, intensity and severity. The
concept of CPC deficit indices is borrowed from drought
terminology (Sheffield and Wood 2007) in which a drought
index is calculated as the deficit of soil moisture relative to its
seasonal climatology. Similarly, an extreme index from the
point of view of the carbon cycle could be calculated as the
deficit of CPC relative to its PCPC. An extreme event is
defined as a period of duration of n months with relative
deficit ratios larger than an arbitrary level. The departure of
CPC from PCPC is the extreme event magnitude Mi

(g CO2 m
−2),

= −M PCPC CPC , (1)i i i

where i is the ith month of n months with Ri exceeding 0.3
within a May–October period. The mean magnitude over the
CPC deficit duration is the intensity I (g CO2 m

−2 month−1),

∑=
=

I M n. (2)
i

n

i

1

The product of duration and intensity gives the CPC
deficit severity S (g C m−2),

= ×S I n, (3)

or

∑=
=

S M . (4)
i

n

i

1

We also define classes of extreme events based on their
duration as follows:
D1–2(1⩽ n⩽ 2), short or medium term, D3–6 (3⩽ n⩽ 6),
long term, where the subscript to D indicates the range of
drought duration in months.

2.4. Statistical analysis

2.4.1. PCA. PCA is a widely used technique in atmospheric
sciences. It is a quantitative method to explain the variation of
large sets of inter-correlated variables, transforming them into
a smaller set of independent (uncorrelated) variables

Environ. Res. Lett. 9 (2014) 065002 S Wei et al

Figure 2. Perfect-deficit approach and modeled Amax. (a) Compar-
ison of CPC, and PCPC by the perfect-deficit approach from flux
tower data and modeled photosynthetic capacity Amax—using the
light-response model (Ruimy et al 1995, Yi et al 2004) (Supple-
mentary Materials). The deficit (shadow) represents the severe GPP
drop occurred in growing season 2003 at the IT-Ro2 site located in
Italy. PCPC gives the observed site-specific maximum daily GPP
rate given ‘perfect’ conditions. (b) Perfect evaporative fraction (PEF)
and daily maximum evaporative fraction (EF) in 2003. The shading
indicates the EF deficit for that year.
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(principal components). Here, PCA is used to find the
correlations between CPC deficits and climate drivers during
the northern growing season (May–October). Datasets were
standardized before we compute the PCA. We use the first
three principal components, which account for at least 70% of
the whole dataset variance, to construct plots with axes
formed by these three components. The correlations among
CPC deficit and climatic drivers were approximately equal to
the cosines of the angles between the corresponding lines in
the plot (Wilks 2006) (Supplementary figure 2) (This is an
approximation because the variance described is 70% and
above, rather than 100%).

2.4.2. Smoothing algorithm. All of the climatic drivers and
model variables were smoothed using a 10 d moving average.

3. Results and discussion

As an example, the yearly photosynthetic capacity (Amax)
curve for site IT-Ro2 (DBF) is constructed from daily data
extracted using equation (S1). The physiological meaning of
Amax is the carbon assimilation rate at saturating values of
photosynthetic photon flux density. The yearly dynamics of
CPC from the perfect-deficit approach and Amax from the light
response model were shown in figure 2(a). Overall, the data-
based CPC is consistent with the model-based Amax. Both
CPC and Amax show the severe carbon assimilation reductions
during the 2003 growing season in European DBF sites.
However, the modeled Amax largely overestimates the carbon
assimilation around the beginning and end of the growing
season, and slightly underestimates it during the growing
season. The index EF deficits show the similar pattern as CPC
deficit (figure 2(b)). The clear relationship between GPP
deficits and EF deficits occurring at the IT-Ro2 site
(figures 2(a), (b)) may indicate that drought was the major
constraint to growing-season carbon assimilation in this site.

As shown for the example site, we applied the perfect-
deficit approach to 27 forest sites covering EBF, DBF, MF
and ENF ecosystems to calculate the duration, intensity and
severity of CPC deficits. Duration means the number of
months with relative deficit above 0.3, intensity was calcu-
lated as the mean magnitude of CPC deficit over the duration
and severity is the product of intensity and duration (see
methods). CPC deficit duration, intensity, and severity for
each site are listed in table 1. Severe CPC deficit events,
characterized by long duration, were mostly discernible at
EBF and DBF sites (D3–6 > 3). For ENF and MF, only 4.9%
and 7.7% of sites exhibit severe CPC deficit events. As shown
in figure 3, at the biome scale, the EBF sites were dominated
by significant reduction in carbon assimilation indicated by
large CPC deficits. Over the studied sites, the EBF CPC
deficits were at the highest average severity, with assimilation
reduction of 824.2 g CO2 m

−2 per growing season, 1.8 months
of duration, and 415.4 g CO2 m

−2 month−1 of intensity. The
average severity, duration and intensity were similar for DBF
sites: 673.2 g CO2 m

−2, 1.5 months, and 412.3

g CO2 m
−2 month−1 respectively. The frequency of severe

CPC deficit events in the broadleaf forests (i.e. EBF and
DBF) indicates high inter-annual variability of carbon
assimilation capacity in these ecosystems. In contrast, the
ENF sites rarely exhibit significant CPC deficits, with
aggregated average values of severity, duration, and intensity
of 149.2 g CO2 m

−2, 0.5 months, and 186.6
g CO2 m

−2 month−1, respectively. The three MF sites behaved
similarly to the ENF sites. We found that the CPC deficits of
forests vary significantly by climate region. The frequency of
severe CPC deficits of Mediterranean forests was high
(table 1). Because Mediterranean forests usually suffer from
long dry summers, drought is the most important cause of
forest carbon assimilation declines in this climate zone. There,
75% of the severe CPC deficit events coincide with significant
EF deficits.

We applied PCA to illuminate the correlation between
CPC deficits and climatic drivers. Conventionally, deconvo-
luting the climatic effects of carbon assimilation is difficult,
because the climatic variables and drought index usually co-
vary strongly. PCA methods can effectively separate those
effects (Jung et al 2007, Wilks 2006). As illustrated in
figure 4, CPC deficit of EBF strongly correlates with EF
deficit, with a mean correlation coefficient (denoted by cosine
of two lines that represent EF deficit and CPC deficit) of 0.42.
The cosine values between CPC deficit and other climatic
variables (Ta, Rn, VPD and P) range from −0.04 to 0.04,
indicating very weak correlations. For DBF biomes, the CPC
deficit also displayed strong correlation with EF (cosine of
0.43), but slight correlation with Rn (cosine of 0.18). These
results suggest a drought control on CPC in these two
broadleaf biomes. However, the correlations of broadleaf
forest CPC deficits and precipitation were weak. This may be
attributed to several reasons. First, the typical probability
density of precipitation is a gamma distribution, while the
PCA approach assumes that data is normally distributed. This
mismatch may introduce bias to assess the role of precipita-
tion in its correlation to CPC deficits. Second, precipitation is
a sporadic input to the soil moisture budget (Noy-Meir 1973),
and does not influence ecosystem activities immediately. In
addition, compared to herbaceous vegetation, trees are gen-
erally more resistant to instantaneous local environmental
changes (Teuling et al 2010) because they can access deep
soil moisture and groundwater, which smooth out variability
in response to precipitation.

A number of previous studies have suggested that, in
temperate boreal forest ecosystems, the growing season
photosynthetic capacity is mostly constrained by temperature
(Falge et al 2002, Griffis, Black 2003). Indeed, the correlation
of the CPC deficits in both ENF and MF with climatic drivers
was weak (figure 4). The correlation between ENF CPC
deficit and Rn was highest (cosine 0.26) out of the climatic
drivers, while the MF CPC deficit had no significant corre-
lation with any of the climate drivers or with EF.

Within the same type of forest, the climatic control of
carbon assimilation capacity could vary among climatic zones
(Supplementary table 1). The CPC deficits of Mediterranean
EBF (Csa) was apparently controlled by drought while that of

Environ. Res. Lett. 9 (2014) 065002 S Wei et al
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Table 1. Forest flux towers used in this study and the number of long term CPC deficit events (over May–October) in each.

Site
code Site name Lat Lon Veg Climate Years

Severe CPC deficit
events

Duration
(months)

Severity
(g CO2 m

−2)
Intensity

(g CO2 m
−2 month−1)

US-
MMS

Morgan Monroe State
Forest

39.32 86.41 DBF Cfa 2000–2005 — 0.5 115.1 230.2

DE-Hai Hainich 51.08 10.45 DBF Cfb 2001–2006 — 0.7 224.3 336.5
FR-Hes Hesse Forest-

Sarrebourg
48.67 7.06 DBF Cfb 2001–2006 3(2003–2005) 2.0 1171.3 585.7

IT-Ro1 Roccarespampani1 42.49 11.93 DBF Csa 2001–2006 3(2001,2003,2004) 2.2 946.1 436.7
IT-Ro2 Roccarespampani2 42.39 11.92 DBF Csa 2002–2006 2(2003,2004) 1.6 956.3 597.7
US-Wcr Willow Creek 45.81 −90.08 DBF Dfb 2001–2006 1(2001) 1.7 719.3 431.6
CA-Oas SK-Old Aspen 53.63 −106.2 DBF Dfc 2000–2005 1(2003) 2.2 579.9 267.6

Average 1.5 673.2 412.3
BR-
Ma2

Manaus—ZF2 K34 −2.61 −60.3 EBF Af 2002,2002,2004–2006 1(2002) 2.0 1276.3 638.2

FR-Pue Puechabon 43.74 3.59 EBF Csa 2001–2006 2(2005,2006) 2.5 1171.3 468.5
IT-Cpz Castelporziano 41.71 12.37 EBF Csa 2001–2006 2(2001,2006) 2.3 795.7 341.0
PT-Esp Espirra 38.64 −8.6 EBF Csa 2002–2004, 2006 — 0.3 53.5 214.1

Average 1.8 824.2 415.4
US-Dk3 Duke Forest

Loblolly Pine
35.97 −79.09 ENF Cfa 2002–2005 — 0.0 0.0 0.0

US-Sp3 Donaldson 29.75 −82.16 ENF Cfa 2001–2004 — 0.5 223.2 446.4
DE-Tha Harandt 50.96 13.57 ENF Cfb 2001–2006 — 0.3 119.1 357.4
DE-Wet Wetzstein 50.45 11.45 ENF Cfb 2002–2006 — 0.6 214.1 356.9
IT-Lav Lavarone 45.95 11.28 ENF Cfb 2001–2002,2004,2006 — 0.0 0.0 0.0
NL-Loo Loobos 52.17 5.74 ENF Cfb 2001–2006 — 0.0 0.0 0.0
IT-Sro San Rossore 46.58 11.43 ENF Csa 2001–2006 1(2003) 1.3 448.1 336.1
US-Wrc Wind River Crane Site 45.82 −121.95 ENF Csb 2000–2002,2004,2006 2(2000, 2006) 1.6 657.3 410.8
US-Ho1 Howland Forest 45.2 −68.74 ENF Dfb 1999–2004 — 0.0 0.0 0.0
US-Ho2 Howland Forest 45.21 −68.75 ENF Dfb 1999–2004 — 0.0 0.0 1.0
CA-obs SK-Southern Old

Black Spruce
53.99 −105.12 ENF Dfc 2000–2005 — 0.5 87.1 174.2

CA-ojp SK-Old Jack Pine 53.9 −104.69 ENF Dfc 2000–2005 — 0.8 127.9 153.5
FI-Hyy Hyytiala 61.84 29.29 ENF Dfc 2001–2006 — 0.3 63.1 189.4

Average 0.5 149.2 186.6
BE-Bra Brasschaat 51.31 4.52 MF Cfb 2000,2002,2004–2006 1(2002) 2.0 629.8 314.4
BE-Vie Vielsalm 50.3 5.99 MF Cfb 2001–2004,2006 — 0.0 0.0 0.0
US-Syv Sylvania Wild-

erness Area
46.242 −89.35 MF Dfb 2002–2005 — 1.0 154.1 154.1

Average 1.0 261.3 156.2

Severe CPC deficit events are defined as three consecutive months with relative deficit ratio (monthly CPC deficit divided by PCPC) exceeding 0.3 (D > 3). Severe CPC deficit events were mostly discernible at EBF and
DBF sites. Climate grouping follows the Köppen–Geiger classification scheme: A, moist tropical climate, with Af indicating tropical rain forest; C, moist climate with mild winters: Cfa and Cfb represent humid
subtropical climate, Csa and Csb represent Mediterranean climate; D, moist climates with severe winters: Dfb represents humid continental climate and Dfc represents subpolar climate.
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tropical (Af) EBF depended less on climatic factors. In con-
trast to Mediterranean (Csa) DBF, whose carbon assimilation
capacity exhibited a strong dependence on drought, con-
tinental and moist tropical DBF (Cfb and Dfb) carbon
assimilation capacities were less impacted by drought.
Instead, Ta and radiation were stronger constraints.

Figure 5 illustrates the monthly global spatial extent of
CPC deficits during the growing season. Non-forested areas

are masked from the analysis. We estimate a climate-attri-
butable global reduction of forest CPC of 6.3 Pg C (∼5.2% of
total terrestrial GPP) per growing season, and EBF forests
contributed 51.7% of the total reduction. Although DBF
displayed significant CPC deficits at the site level, the total
carbon lost was small due to the small area this biome covered
globally. The high CPC deficits of EBF occur in August and
September, especially at the tropical forests of Brazil. The
large CPC deficits in temperate and boreal forests (ENF and
MF) occurred in May, most pronounced at boreal forests of
Canada, northern United States, and western Russia. The ENF
and MF biomes together contribute almost half of total forest
carbon assimilation reduction.

4. Conclusions

We analyzed the effects of climate extremes on forest carbon
assimilation and discussed how that might impact the carbon
cycle. An observation-based estimate of those impacts was
presented by introducing three indices of assimilation deficit
periods: duration, intensity and severity. Our study suggests
that carbon assimilation capacities of broadleaf forests (EBF
and DBF) could be significantly impacted by drought, indi-
cated by low values of EF. On the global scale, EBF con-
tributes more than 50% of the carbon reduction of forests.
Climate extreme events, specifically drought, are expected to
increase in intensity and severity in the future. The present
analysis can help identify and quantify the impacts of climate
extremes on terrestrial carbon cycles and improve our
understanding of carbon-climate feedback mechanisms.

Environ. Res. Lett. 9 (2014) 065002 S Wei et al

Figure 3. Duration, intensity and severity of CPC deficit of Fluxnet forest sites (per growing season). Shown are the median (red horizontal
lines), the quartiles (colored boxes), 25th and 75th percentiles (the edges of the box). Duration counts the months with relative deficit ratio
exceeding 0.3 for each growing season. Magnitude indicates the sum of the differences between monthly PCPC and CPC. Mean magnitude
(the value of magnitude over duration) is defined as intensity. The product of duration and intensity gives the CPC deficit severity.

Figure 4. Correlations between CPC deficits and climatic variable
deficits (May–October). Shown are the median (red horizontal lines),
the quartiles (colored boxes), 25th and 75th percentiles (the edges of
the box). The correlations are calculated using principal component
analysis. Three components are retained to form three dimensional
plots, which explain at least 70% of total variations of the dataset
(Supplementary table 2). Correlations are calculated as the cosines of
the angles between GPP deficits and Temperature (Ta), Radiation
(Rn), vapor pressure deficit (VPD), Precipitation (P), Evaporative
Fraction (EF) deficits. CPC deficits of DBF and EBF are highly
correlated with EF deficits, suggesting drought control of carbon
sequestration among these two types of forests.
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Figure 5. Remotely sensed GPP deficit over May–October. GPP deficits through 2001–2013 are aggregated into monthly means. In this
study, we used global MODIS GPP datasets published in Zhao and Running (2010) to calculate GPP deficits by perfect-deficit approach (Yi
et al 2012). Forest GPP was calculated based on MOD12C1 land cover product. Non-forested areas were masked from our analysis.
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