30 research outputs found

    Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: Tranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding. Methods: We did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124. Findings: Between July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98). Interpretation: We found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Phytoplankton Phenology in the Coastal Zone of Cyprus, Based on Remote Sensing and In Situ Observations

    No full text
    Alterations in phytoplankton biomass, community structure and timing of their growth (phenology), are directly implicated in the carbon cycle and energy transfer to higher trophic levels of the marine food web. Due to the lack of long-term in situ datasets, there is very little information on phytoplankton seasonal succession in Cyprus (eastern Mediterranean Sea). On the other hand, satellite-derived measurements of ocean colour can only provide long-term time series of chlorophyll (an index of phytoplankton biomass) up to the first optical depth (surface waters). The coupling of both means of observations is essential for understanding phytoplankton dynamics and their response to environmental change. Here, we use 23 years of remotely sensed, regionally tuned ocean-colour observations, along with a unique time series of in situ phytoplankton pigment composition data, collected in coastal waters of Cyprus during 2016. The satellite observations show an initiation of phytoplankton growth period in November, a peak in February and termination in April, with an overall mean duration of ~4 months. An in-depth exploration of in situ total Chl-a concentration and phytoplankton pigments revealed that pico- and nano-plankton cells dominated the phytoplankton community. The growth peak in February was dominated by nanophytoplankton and potentially larger diatoms (pigments of 19’ hexanoyloxyfucoxanthin and fucoxanthin, respectively), in the 0–20 m layer. The highest total Chl-a concentration was recorded at a station off Akrotiri peninsula in the south, where strong coastal upwelling has been reported. Another station in the southern part, located next to a fish farm, showed a higher contribution of picophytoplankton during the most oligotrophic period (summer). Our results highlight the importance of using available in situ data coupled to ocean-colour remote sensing, for monitoring marine ecosystems in areas with limited in situ data availability

    Phytoplankton Phenology in the Coastal Zone of Cyprus, Based on Remote Sensing and <i>In Situ</i> Observations

    No full text
    Alterations in phytoplankton biomass, community structure and timing of their growth (phenology), are directly implicated in the carbon cycle and energy transfer to higher trophic levels of the marine food web. Due to the lack of long-term in situ datasets, there is very little information on phytoplankton seasonal succession in Cyprus (eastern Mediterranean Sea). On the other hand, satellite-derived measurements of ocean colour can only provide long-term time series of chlorophyll (an index of phytoplankton biomass) up to the first optical depth (surface waters). The coupling of both means of observations is essential for understanding phytoplankton dynamics and their response to environmental change. Here, we use 23 years of remotely sensed, regionally tuned ocean-colour observations, along with a unique time series of in situ phytoplankton pigment composition data, collected in coastal waters of Cyprus during 2016. The satellite observations show an initiation of phytoplankton growth period in November, a peak in February and termination in April, with an overall mean duration of ~4 months. An in-depth exploration of in situ total Chl-a concentration and phytoplankton pigments revealed that pico- and nano-plankton cells dominated the phytoplankton community. The growth peak in February was dominated by nanophytoplankton and potentially larger diatoms (pigments of 19’ hexanoyloxyfucoxanthin and fucoxanthin, respectively), in the 0–20 m layer. The highest total Chl-a concentration was recorded at a station off Akrotiri peninsula in the south, where strong coastal upwelling has been reported. Another station in the southern part, located next to a fish farm, showed a higher contribution of picophytoplankton during the most oligotrophic period (summer). Our results highlight the importance of using available in situ data coupled to ocean-colour remote sensing, for monitoring marine ecosystems in areas with limited in situ data availability

    Phytoplankton Phenology in the Coastal Zone of Cyprus, Based on Remote Sensing and In Situ Observations

    No full text
    Alterations in phytoplankton biomass, community structure and timing of their growth (phenology), are directly implicated in the carbon cycle and energy transfer to higher trophic levels of the marine food web. Due to the lack of long-term in situ datasets, there is very little information on phytoplankton seasonal succession in Cyprus (eastern Mediterranean Sea). On the other hand, satellite-derived measurements of ocean colour can only provide long-term time series of chlorophyll (an index of phytoplankton biomass) up to the first optical depth (surface waters). The coupling of both means of observations is essential for understanding phytoplankton dynamics and their response to environmental change. Here, we use 23 years of remotely sensed, regionally tuned ocean-colour observations, along with a unique time series of in situ phytoplankton pigment composition data, collected in coastal waters of Cyprus during 2016. The satellite observations show an initiation of phytoplankton growth period in November, a peak in February and termination in April, with an overall mean duration of 4 months. An in-depth exploration of in situ total Chl-a concentration and phytoplankton pigments revealed that pico- and nano-plankton cells dominated the phytoplankton community. The growth peak in February was dominated by nanophytoplankton and potentially larger diatoms (pigments of 19’ hexanoyloxyfucoxanthin and fucoxanthin, respectively), in the 0-20 m layer. The highest total Chl-a concentration was recorded at a station off Akrotiri peninsula in the south, where strong coastal upwelling has been reported. Another station in the southern part, located next to a fish farm, showed a higher contribution of picophytoplankton during the most oligotrophic period (summer). Our results highlight the importance of using available in situ data coupled to ocean-colour remote sensing, for monitoring marine ecosystems in areas with limited in situ data availability
    corecore