21 research outputs found

    HII Region Oxygen Abundances in Starbursting Transition Dwarf Galaxies

    Get PDF
    We present empirical HII region oxygen abundances for a sample of low-luminosity starburst galaxies which are in a short lived evolutionary state. All five galaxies are characterized by centrally concentrated star formation, which is embedded in smooth stellar envelopes resembling dE-like systems. The galaxies also have small gas contents with typical M_{HI}/L_{B} ~ 0.1 resulting in gas exhaustion timescales less than 1 Gyr, even when molecular gas is considered. We find, compared to other morphologically similar systems, the galaxies of this sample have surprisingly high oxygen abundances with 12 + log(O/H) ~ 9.0. We propose that these objects are a subclass of evolved blue compact dwarfs, which have exhausted most of their gas supply while retaining their metals. We further propose that we are seeing these objects during a short phase in which they are nearing the end of their starburst activity, and could become early-type dwarfs.Comment: 13 pages, 3 figures, accepted by ApJ Letter

    Intermediate Old Star Clusters in a Young Starburst: The case of NGC 5253

    Full text link
    We investigate the star cluster population in the outer parts of the starburst galaxy NGC 5253 using archive images taken with the Hubble Space Telescope's Advanced Camera for Surveys. Based on the F415W, F555W, and F814W photometry ages and masses are estimated for bona-fide star cluster candidates. We find three potentially massive (\ge 10 \time 10^5 \Msun) star clusters at ages of order of 1-2 Gyr, implying, if confirmed, a high global star formation rate in NGC 5253 during that epoch. This result underlines earlier findings that the current star burst is just one episode in an very active dwarf galaxy.Comment: accepted for publication in MNRAS - The definitive version is (will be) available at www.blackwell-synergy.co

    The Environmental Influence on the Evolution of Local Galaxies

    Full text link
    The results of an Halpha photometric survey of 30 dwarf galaxies of various morphologies in the Centaurus A and Sculptor groups are presented. Of these 30, emission was detected in 13: eight are of late-type, two are early-type and three are of mixed-morphology. The typical flux detection limit of 2e-16 erg s-1 cm-2, translates into a Star Formation Rate (SFR) detection limit of 4e-6 M_sol yr-1 . In the light of these results, the morphology-density relation is reexamined: It is shown that, despite a number of unaccounted parameters, there are significant correlations between the factors determining the morphological type of a galaxy and its environment. Dwarf galaxies in high density regions have lower current SFR and lower neutral gas content than their low density counterparts, confirming earlier results from the Local Group and other denser environments. The effect of environment is also seen in the timescale formed from the ratio of blue luminosity to current SFR - dwarfs in higher density environments have larger values, indicating relatively higher past average SFR. The influence of environment extends very far and no dwarfs from our sample can be identified as 'field' objects.Comment: 23 pages, 9 figures, accepted in A

    UV+IR Star Formation Rates: Hickson Compact Groups with Swift and Spitzer

    Full text link
    We present Swift UVOT (1600-3000A) 3-band photometry for 41 galaxies in 11 nearby (<4500km/s) Hickson Compact Groups (HCGs) of galaxies. We use the uvw2-band (2000A) to estimate the dust-unobscured component, SFR_UV, of the total star-formation rate, SFR_T. We use Spitzer MIPS 24-micron photometry to estimate SFR_IR, the dust-obscured component of SFR_T. We obtain SFR_T=SFR_UV+SFR_IR. Using 2MASS K_s band based stellar mass, M*, estimates, we calculate specific SFRs, SSFR=SFR_T/M*. SSFR values show a clear and significant bimodality, with a gap between low (<~3.2x10^-11 / yr) and high SSFR (>~1.2x10^-10 / yr) systems. All galaxies with MIR activity index a_IRAC 0) are in the high- (low-) SSFR locus, as expected if high levels of star-formation power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. All elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We divide our sample into three subsamples (I, II and III) according to decreasing HI-richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and a_IRAC bimodality, 12 out of 15 type-I (11 out of 12 type-III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. Unlike HCG galaxies, galaxies in a comparison quiescent SINGS sub-sample are continuously distributed both in SSFR and a_IRAC. Any uncertainties can only further enhance the SSFR bimodality. These results suggest that an environment characterized by high galaxy number-densities and low galaxy velocity-dispersions, such as the one found in compact groups, plays a key role in accelerating galaxy evolution by enhancing star-formation processes in galaxies and favoring a fast transition to quiescence.(abridged)Comment: Accepted by ApJ. [8 Tables, 16 Figures. Color figures have reduced size for ArXiv - emulateapj v. 2/16/10

    Search for blue compact dwarf galaxies during quiescence II: metallicities of gas and stars, ages, and star-formation rates

    Full text link
    We examine the metallicity and age of a large set of SDSS/DR6 galaxies that may be Blue Compact Dwarf (BCD) galaxies during quiescence (QBCDs).The individual spectra are first classified and then averaged to reduce noise. The metallicity inferred from emission lines (tracing ionized gas) exceeds by ~0.35 dex the metallicity inferred from absorption lines (tracing stars). Such a small difference is significant according to our error budget estimate. The same procedure was applied to a reference sample of BCDs, and in this case the two metallicities agree, being also consistent with the stellar metallicity in QBCDs. Chemical evolution models indicate that the gas metallicity of QBCDs is too high to be representative of the galaxy as a whole, but it can represent a small fraction of the galactic gas, self enriched by previous starbursts. The luminosity weighted stellar age of QBCDs spans the whole range between 1 and 10 Gyr, whereas it is always smaller than 1 Gyr for BCDs. Our stellar ages and metallicities rely on a single stellar population spectrum fitting procedure, which we have specifically developed for this work using the stellar library MILES.Comment: Accepted for publication in ApJ. 20 pages. 16 figures (corrected typos

    The Metallicities of Low Stellar Mass Galaxies and the Scatter in the Mass-Metallicity Relation

    Full text link
    In this investigation we quantify the metallicities of low mass galaxies by constructing the most comprehensive census to date. We use galaxies from the SDSS and DEEP2 survey and estimate metallicities from their optical emission lines. We also use two smaller samples from the literature which have metallicities determined by the direct method using the temperature sensitive [OIII]4363 line. We examine the scatter in the local mass-metallicity (MZ) relation determined from ~20,000 star-forming galaxies in the SDSS and show that it is larger at lower stellar masses, consistent with the theoretical scatter in the MZ relation determined from hydrodynamical simulations. We determine a lower limit for the scatter in metallicities of galaxies down to stellar masses of ~10^7 M_solar that is only slightly smaller than the expected scatter inferred from the SDSS MZ relation and significantly larger than what is previously established in the literature. The average metallicity of star-forming galaxies increases with stellar mass. By examining the scatter in the SDSS MZ relation, we show that this is mostly due to the lowest metallicity galaxies. The population of low mass, metal-rich galaxies have properties which are consistent with previously identified galaxies that may be transitional objects between gas-rich dwarf irregulars and gas-poor dwarf spheroidals and ellipticals.Comment: Accepted to ApJ. 17 pages, 17 figure

    Radial distribution of stars, gas and dust in SINGS galaxies. I. Surface photometry and morphology

    Get PDF
    We present ultraviolet through far-infrared surface brightness profiles for the 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). The imagery used to measure the profiles includes GALEX UV data, optical images from KPNO, CTIO and SDSS, near-IR data from 2MASS, and mid- and far-infrared images from Spitzer. Along with the radial profiles, we also provide multi-wavelength asymptotic magnitudes and several non-parametric indicators of galaxy morphology: the concentration index (C_42), the asymmetry (A), the Gini coefficient (G) and the normalized second-order moment of the brightest 20% of the galaxy's flux (M_20). Our radial profiles show a wide range of morphologies and multiple components (bulges, exponential disks, inner and outer disk truncations, etc.) that vary not only from galaxy to galaxy but also with wavelength for a given object. In the optical and near-IR, the SINGS galaxies occupy the same regions in the C_42-A-G-M_20 parameter space as other normal galaxies in previous studies. However, they appear much less centrally concentrated, more asymmetric and with larger values of G when viewed in the UV (due to star-forming clumps scattered across the disk) and in the mid-IR (due to the emission of Polycyclic Aromatic Hydrocarbons at 8.0 microns and very hot dust at 24 microns).Comment: 66 pages in preprint format, 14 figures, published in ApJ. The definitive publisher authenticated version is available online at http://dx.doi.org/10.1088/0004-637X/703/2/156

    Modelling element abundances in semi-analytic models of galaxy formation

    Get PDF
    We update the treatment of chemical evolution in the Munich semi-analytic model, L-GALAXIES. Our new implementation includes delayed enrichment from stellar winds, supernovae type II (SNe-II) and supernovae type Ia (SNe-Ia), as well as metallicity-dependent yields and a reformulation of the associated supernova feedback. Two different sets of SN-II yields and three different SN-Ia delay-time distributions (DTDs) are considered, and eleven heavy elements (including O, Mg and Fe) are self-consistently tracked. We compare the results of this new implementation with data on a) local, star-forming galaxies, b) Milky Way disc G dwarfs, and c) local, elliptical galaxies. We find that the z=0 gas-phase mass-metallicity relation is very well reproduced for all forms of DTD considered, as is the [Fe/H] distribution in the Milky Way disc. The [O/Fe] distribution in the Milky Way disc is best reproduced when using a DTD with less than or equal to 50 per cent of SNe-Ia exploding within ~400 Myrs. Positive slopes in the mass-[alpha/Fe] relations of local ellipticals are also obtained when using a DTD with such a minor `prompt' component. Alternatively, metal-rich winds that drive light alpha elements directly out into the circumgalactic medium also produce positive slopes for all forms of DTD and SN-II yields considered. Overall, we find that the best model for matching the wide range of observational data considered here should include a power-law SN-Ia DTD, SN-II yields that take account of prior mass loss through stellar winds, and some direct ejection of light alpha elements out of galaxies

    Morphological Mutations of Dwarf Galaxies

    Full text link
    Dwarf galaxies (DGs) are extremely challenging objects in extragalactic astrophysics. They are expected to originate as the first units in Cold Dark-Matter cosmology. They are the galaxy type most sensitive to environmental influences and their division into multiple types with various properties have invoked the picture of their variant morphological transformations. Detailed observations reveal characteristics which allow to deduce the evolutionary paths and to witness how the environment has affected the evolution. Here we review peculiarities of general morphological DG types and refer to processes which can deplete gas-rich irregular DGs leading to dwarf ellipticals, while gas replenishment implies an evolutionary cycling. Finally, as the less understood DG types the Milky Way satellite dwarf spheroidal galaxies are discussed in the context of transformation.Comment: 17 pages, 7 figures, Proceedings of Symposium 3 of JENAM 2010 "Dwarf Galaxies: Key to Galaxy Formation and Evolution", Polychronis Papaderos, Simone Recchi, Gerhard Hensler (Eds.), Springer Publisher, Heidelberg, ISBN 978-3-642-22017-

    Mercantil-Memoiren aus der Türkei

    No full text
    Geschrieben mit bes. Beziehung für Deutschland von E[duard] Dellenbusc
    corecore