371 research outputs found
Topological properties of regular generalized function algebras
We investigate density of various subalgebras of regular generalized
functions in the special Colombeau algebra of generalized functions.Comment: 6 page
Growth rates of the Weibel and tearing mode instabilities in a relativistic pair plasma
We present an algorithm for solving the linear dispersion relation in an
inhomogeneous, magnetised, relativistic plasma. The method is a generalisation
of a previously reported algorithm that was limited to the homogeneous case.
The extension involves projecting the spatial dependence of the perturbations
onto a set of basis functions that satisfy the boundary conditions (spectral
Galerkin method). To test this algorithm in the homogeneous case, we derive an
analytical expression for the growth rate of the Weibel instability for a
relativistic Maxwellian distribution and compare it with the numerical results.
In the inhomogeneous case, we present solutions of the dispersion relation for
the relativistic tearing mode, making no assumption about the thickness of the
current sheet, and check the numerical method against the analytical
expression.Comment: Accepted by PPC
Isomorphisms of algebras of Colombeau generalized functions
We show that for smooth manifolds X and Y, any isomorphism between the
special algebra of Colombeau generalized functions on X, resp. Y is given by
composition with a unique Colombeau generalized function from Y to X. We also
identify the multiplicative linear functionals from the special algebra of
Colombeau generalized functions on X to the ring of Colombeau generalized
numbers. Up to multiplication with an idempotent generalized number, they are
given by an evaluation map at a compactly supported generalized point on X.Comment: 10 page
Numerical solution of the linear dispersion relation in a relativistic pair plasma
We describe an algorithm that computes the linear dispersion relation of
waves and instabilities in relativistic plasmas within a Vlasov-Maxwell
description. The method used is fully relativistic and involves explicit
integration of particle orbits along the unperturbed equilibrium trajectories.
We check the algorithm against the dispersion curves for a single component
magnetised plasma and for an unmagnetised plasma with counter-streaming
components in the non-relativistic case. New results on the growth rate of the
Weibel or two-stream instability in a hot unmagnetised pair plasma consisting
of two counter-streaming relativistic Maxwellians are presented. These are
relevant to the physics of the relativistic plasmas found in gamma-ray bursts,
relativistic jets and pulsar winds.Comment: Accepted by Plasma Physics and Controlled Fusio
ENSO indices from sea surface salinity observed by Aquarius and Argo
Analysis of the first 26 months of data from the Aquarius satellite confirms the existence of a sharp sea surface salinity (SSS) front along the equator in the western equatorial Pacific. Following several earlier studies, we use the longitudinal location of the 34.8-psu isohaline as an index, termed Niño-S34.8, to measure the zonal displacement of the SSS front and consequently the eastern edge of the western Pacific warm pool. The on-going collection of the Array for Real-time Geostrophic Oceanography (ARGO) program data shows high correlations between Niño-S34.8 and the existing indices of El Niño, suggesting its potential important role in ENSO evolution. Further analysis of the ARGO data reveals that SSS variability in the southeastern tropical Pacific is crucial to identify the type of El Niño. A new SSS index, termed the southeastern Pacific SSS index (SEPSI), is defined based on the SSS variability in the region (0°-10°S, 150°-90°W). The SEPSI is highly correlated with the El Niño Modoki index, as well as the Trans-Niño index, introduced by previous studies. It has large positive anomalies during central Pacific El Niño or El Niño Modoki events, as a result of enhanced zonal sea surface temperature gradients between the central and eastern tropical Pacific, and can be used to characterize the type of El Niño. The processes that possibly control these SSS indices are also discussed. © 2014 The Oceanographic Society of Japan and Springer Japan
Impact flux on Jupiter: From superbolides to large-scale collisions
Context. Regular observations of Jupiter by a large number of amateur astronomers have resulted in the serendipitous discovery of short bright flashes in its atmosphere, which have been proposed as being caused by impacts of small objects. Three flashes were detected: one on June 3, 2010, one on August 20, 2010, and one on September 10, 2012. Aims. We show that the flashes are caused by impacting objects that we characterize in terms of their size, and we study the flux of small impacts on Jupiter. Methods. We measured the light curves of these atmospheric airbursts to extract their luminous energy and computed the masses and sizes of the objects. We ran simulations of impacts and compared them with the light curves. We analyzed the statistical significance of these events in the large pool of Jupiter observations. Results. All three objects are in the 5-20 m size category depending on their density, and they released energy comparable to the recent Chelyabinsk airburst. Model simulations approximately agree with the interpretation of the limited observations. Biases in observations of Jupiter suggest a rate of 12-60 similar impacts per year and we provide software tools for amateurs to examine the faint signature of impacts in their data to increase the number of detected collisions. Conclusions. The impact rate agrees with dynamical models of comets. More massive objects (a few 100 m) should impact with Jupiter every few years leaving atmospheric dark debris features that could be detectable about once per decade
Kinetic Theory of Plasmas: Translational Energy
In the present contribution, we derive from kinetic theory a unified fluid
model for multicomponent plasmas by accounting for the electromagnetic field
influence. We deal with a possible thermal nonequilibrium of the translational
energy of the particles, neglecting their internal energy and the reactive
collisions. Given the strong disparity of mass between the electrons and heavy
particles, such as molecules, atoms, and ions, we conduct a dimensional
analysis of the Boltzmann equation. We then generalize the Chapman-Enskog
method, emphasizing the role of a multiscale perturbation parameter on the
collisional operator, the streaming operator, and the collisional invariants of
the Boltzmann equation. The system is examined at successive orders of
approximation, each of which corresponding to a physical time scale. The
multicomponent Navier-Stokes regime is reached for the heavy particles, which
follow a hyperbolic scaling, and is coupled to first order drift-diffusion
equations for the electrons, which follow a parabolic scaling. The transport
coefficients exhibit an anisotropic behavior when the magnetic field is strong
enough. We also give a complete description of the Kolesnikov effect, i.e., the
crossed contributions to the mass and energy transport fluxes coupling the
electrons and heavy particles. Finally, the first and second principles of
thermodynamics are proved to be satisfied by deriving a total energy equation
and an entropy equation. Moreover, the system of equations is shown to be
conservative and the purely convective system hyperbolic, thus leading to a
well-defined structure
Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells
Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general. Using biochemical approaches and superresolution microscopy, we show that estrogen drives membrane ERα into endosomes in breast cancer cells and that its fate is determined by the presence of fibronectin (FN) in the extracellular matrix; it is trafficked to lysosomes in the absence of FN and avoids the lysosomal compartment in its presence. In this context, FN prolongs ERα half-life and strengthens its transcriptional activity. We show that ERα is associated with β1-integrin at the membrane, and this integrin follows the same endocytosis and subcellular trafficking pathway triggered by estrogen. Moreover, ERα+ vesicles are present within human breast tissues, and colocalization with β1-integrin is detected primarily in tumors. Our work unravels a key, clinically relevant mechanism of microenvironmental regulation of ERα signaling.Fil: Sampayo, Rocío Guadalupe. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Toscani, Andrés Martin. Universidad Nacional de Luján; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rubashkin, Matthew G.. University of California; Estados UnidosFil: Thi, Kate. Lawrence Berkeley National Laboratory; Estados UnidosFil: Masullo, Luciano Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Violi, Ianina Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Lakins, Jonathon N.. University of California; Estados UnidosFil: Caceres, Alfredo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Hines, William C.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Coluccio Leskow, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de Luján; ArgentinaFil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Chialvo, Dante Renato. Universidad de Buenos Aires; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; ArgentinaFil: Bissell, Mina J.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Weaver, Valerie M.. University of California; Estados UnidosFil: Simian, Marina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentin
- …