196 research outputs found

    Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes.

    Get PDF
    Reduced insulin release has been linked to defect exocytosis in β-cells. However, whether expression of genes suggested to be involved in the exocytotic process (exocytotic genes) is altered in pancreatic islets from patients with type 2 diabetes (T2D), and correlate to insulin secretion, needs to be further investigated. Analysing expression levels of 23 exocytotic genes using microarray revealed reduced expression of five genes in human T2D islets (χ(2)=13.25; p<0.001). Gene expression of STX1A, SYT4, SYT7, SYT11, SYT13, SNAP25 and STXBP1 correlated negatively to in vivo measurements of HbA1c levels and positively to glucose stimulated insulin secretion (GSIS) in vitro in human islets. STX1A, SYT4 and SYT11 protein levels correspondingly decreased in human T2D islets. Moreover, silencing of SYT4 and SYT13 reduced GSIS in INS1-832/13 cells. Our data support that reduced expression of exocytotic genes contributes to impaired insulin secretion, and suggest decreased expression of these genes as part of T2D pathogenesis

    Some investigations into non passive listening

    Get PDF
    Our knowledge of the function of the auditory nervous system is based upon a wealth of data obtained, for the most part, in anaesthetised animals. More recently, it has been generally acknowledged that factors such as attention profoundly modulate the activity of sensory systems and this can take place at many levels of processing. Imaging studies, in particular, have revealed the greater activation of auditory areas and areas outside of sensory processing areas when attending to a stimulus. We present here a brief review of the consequences of such non-passive listening and go on to describe some of the experiments we are conducting to investigate them. In imaging studies, using fMRI, we can demonstrate the activation of attention networks that are non-specific to the sensory modality as well as greater and different activation of the areas of the supra-temporal plane that includes primary and secondary auditory areas. The profuse descending connections of the auditory system seem likely to be part of the mechanisms subserving attention to sound. These are generally thought to be largely inactivated by anaesthesia. However, we have been able to demonstrate that even in an anaesthetised preparation, removing the descending control from the cortex leads to quite profound changes in the temporal patterns of activation by sounds in thalamus and inferior colliculus. Some of these effects seem to be specific to the ear of stimulation and affect interaural processing. To bridge these observations we are developing an awake behaving preparation involving freely moving animals in which it will be possible to investigate the effects of consciousness (by contrasting awake and anaesthetized), passive and active listening

    Expression and Regulation of Cyclic Nucleotide Phosphodiesterases in Human and Rat Pancreatic Islets

    Get PDF
    As shown by transgenic mouse models and by using phosphodiesterase 3 (PDE3) inhibitors, PDE3B has an important role in the regulation of insulin secretion in pancreatic β-cells. However, very little is known about the regulation of the enzyme. Here, we show that PDE3B is activated in response to high glucose, insulin and cAMP elevation in rat pancreatic islets and INS-1 (832/13) cells. Activation by glucose was not affected by the presence of diazoxide. PDE3B activation was coupled to an increase as well as a decrease in total phosphorylation of the enzyme. In addition to PDE3B, several other PDEs were detected in human pancreatic islets: PDE1, PDE3, PDE4C, PDE7A, PDE8A and PDE10A. We conclude that PDE3B is activated in response to agents relevant for β-cell function and that activation is linked to increased as well as decreased phosphorylation of the enzyme. Moreover, we conclude that several PDEs are present in human pancreatic islets

    Phosphodiesterase 3B Is Localized in Caveolae and Smooth ER in Mouse Hepatocytes and Is Important in the Regulation of Glucose and Lipid Metabolism

    Get PDF
    Cyclic nucleotide phosphodiesterases (PDEs) are important regulators of signal transduction processes mediated by cAMP and cGMP. One PDE family member, PDE3B, plays an important role in the regulation of a variety of metabolic processes such as lipolysis and insulin secretion. In this study, the cellular localization and the role of PDE3B in the regulation of triglyceride, cholesterol and glucose metabolism in hepatocytes were investigated. PDE3B was identified in caveolae, specific regions in the plasma membrane, and smooth endoplasmic reticulum. In caveolin-1 knock out mice, which lack caveolae, the amount of PDE3B protein and activity were reduced indicating a role of caveolin-1/caveolae in the stabilization of enzyme protein. Hepatocytes from PDE3B knock out mice displayed increased glucose, triglyceride and cholesterol levels, which was associated with increased expression of gluconeogenic and lipogenic genes/enzymes including, phosphoenolpyruvate carboxykinase, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein 1c and hydroxyl-3-methylglutaryl coenzyme A reductase. In conclusion, hepatocyte PDE3B is localized in caveolae and smooth endoplasmic reticulum and plays important roles in the regulation of glucose, triglyceride and cholesterol metabolism. Dysregulation of PDE3B could have a role in the development of fatty liver, a condition highly relevant in the context of type 2 diabetes

    Systemic blockade of ACVR2B ligands prevents chemotherapy-induced muscle wasting by restoring muscle protein synthesis without affecting oxidative capacity or atrogenes

    Get PDF
    Doxorubicin is a widely used and effective chemotherapy drug. However, cardiac and skeletal muscle toxicity of doxorubicin limits its use. Inhibiting myostatin/activin signalling can prevent muscle atrophy, but its effects in chemotherapy-induced muscle wasting are unknown. In the present study we investigated the effects of doxorubicin administration alone or combined with activin receptor ligand pathway blockade by soluble activin receptor IIB (sACVR2B-Fc). Doxorubicin administration decreased body mass, muscle size and bone mineral density/content in mice. However, these effects were prevented by sACVR2B-Fc administration. Unlike in many other wasting situations, doxorubicin induced muscle atrophy without markedly increasing typical atrogenes or protein degradation pathways. Instead, doxorubicin decreased muscle protein synthesis which was completely restored by sACVR2B-Fc. Doxorubicin administration also resulted in impaired running performance without effects on skeletal muscle mitochondrial capacity/function or capillary density. Running performance and mitochondrial function were unaltered by sACVR2B-Fc administration. Tumour experiment using Lewis lung carcinoma cells demonstrated that sACVR2B-Fc decreased the cachectic effects of chemotherapy without affecting tumour growth. These results demonstrate that blocking ACVR2B signalling may be a promising strategy to counteract chemotherapy-induced muscle wasting without damage to skeletal muscle oxidative capacity or cancer treatment.Peer reviewe

    Long telomeres are associated with clonality in wild populations of the fissiparous starfish Coscinasterias tenuispina

    Get PDF
    7 páginas, 4 figuras, 3 tablasTelomeres usually shorten during an organism’s lifespan and have thus been used as an aging and health marker. When telomeres become sufficiently short, senescence is induced. The most common method of restoring telomere length is via telomerase reverse transcriptase activity, highly expressed during embryogenesis. However, although asexual reproduction from adult tissues has an important role in the life cycles of certain species, its effect on the aging and fitness of wild populations, as well as its implications for the long-term survival of populations with limited genetic variation, is largely unknown. Here we compare relative telomere length of 58 individuals from four populations of the asexually reproducing starfish Coscinasterias tenuispina. Additionally, 12 individuals were used to compare telomere lengths in regenerating and non-regenerating arms, in two different tissues (tube feet and pyloric cecum). The level of clonality was assessed by genotyping the populations based on 12 specific microsatellite loci and relative telomere length was measured via quantitative PCR. The results revealed significantly longer telomeres in Mediterranean populations than Atlantic ones as demonstrated by the Kruskal–Wallis test (K=24.17, significant value: P-valueo0.001), with the former also characterized by higher levels of clonality derived from asexual reproduction. Telomeres were furthermore significantly longer in regenerating arms than in non-regenerating arms within individuals (pyloric cecum tissue: Mann–Whitney test, V=299, P-valueo10− 6; and tube feet tissue Student's t= 2.28, P-value =0.029). Our study suggests that one of the mechanisms responsible for the long-term somatic maintenance and persistence of clonal populations is telomere elongation.This research was financially supported by a PhD fellowship FPI-MICINN (BES-2011-044154) (ACG), the European ASSEMBLY project (227799), the Swedish Royal Academy of Sciences (ACG) and the Spanish Government project CTM2010-22218-C02. The research was also supported by a ‘Juan de la Cierva’ contract from the Spanish Government (RPP) and by the Adlerbertska Research Foundation (HNS).Peer reviewe

    Short telomere length is associated with impaired cognitive performance in European ancestry cohorts

    Get PDF
    The association between telomere length (TL) dynamics on cognitive performance over the life-course is not well understood. This study meta-analyses observational and causal associations between TL and six cognitive traits, with stratifications on APOE genotype, in a Mendelian Randomization (MR) framework. Twelve European cohorts (N = 17 052; mean age = 59.2 +/- 8.8 years) provided results for associations between qPCR-measuredTL (T/S-ratio scale) and general cognitive function, mini-mental state exam (MMSE), processing speed by digit symbol substitution test (DSST), visuospatial functioning, memory and executive functioning (STROOP). In addition, a genetic risk score (GRS) for TL including seven known genetic variants for TL was calculated, and used in associations with cognitive traits as outcomes in all cohorts. Observational analyses showed that longer telomeres were associated with better scores on DSST (beta = 0.051 per s. d.-increase of TL; 95% confidence interval (CI): 0.024, 0.077; P = 0.0002), and MMSE (beta = 0.025; 95% CI: 0.002, 0.047; P = 0.03), and faster STROOP (beta = -0.053; 95% CI: -0.087, -0.018; P = 0.003). Effects for DSST were stronger in APOE epsilon 4 non-carriers (beta = 0.081; 95% CI: 0.045, 0.117; P = 1.0 x 10(-5)), whereas carriers performed better in STROOP (beta = -0.074; 95% CI: -0.140, -0.009; P = 0.03). Causal associations were found for STROOP only (beta = -0.598 per s. d.-increase of TL; 95% CI: -1.125, -0.072; P = 0.026), with a larger effect in epsilon 4-carriers (beta = -0.699; 95% CI: -1.330, -0.069; P = 0.03). Two-sample replication analyses using CHARGE summary statistics showed causal effects between TL and general cognitive function and DSST, but not with STROOP. In conclusion, we suggest causal effects from longer TL on better cognitive performance, where APOE epsilon 4-carriers might be at differential risk.Peer reviewe

    Agents increasing cyclic GMP amplify 5-HT4-elicited positive inotropic response in failing rat cardiac ventricle

    Get PDF
    Activation of 5-HT4 receptors in failing ventricles elicits a cAMP-dependent positive inotropic response which is mainly limited by the cGMP-inhibitable phosphodiesterase (PDE) 3. However, PDE4 plays an additional role which is demasked by PDE3 inhibition. The objective of this study was to evaluate the effect of cGMP generated by particulate and soluble guanylyl cyclase (GC) on the 5-HT4-mediated inotropic response. Extensive myocardial infarctions were induced by coronary artery ligation in Wistar rats, exhibiting heart failure 6 weeks after surgery. Contractility was measured in left ventricular preparations. Cyclic GMP was measured by EIA. In ventricular preparations, ANP or BNP displayed no impact on 5-HT4-mediated inotropic response. However, CNP increased the 5-HT4-mediated inotropic response as well as the β1-adrenoceptor (β1-AR)-mediated response to a similar extent as PDE3 inhibition by cilostamide. Pretreatment with cilostamide eliminated the effect of CNP. Inhibition of nitric oxide (NO) synthase and soluble GC by l-NAME and ODQ, respectively, attenuated the 5-HT4-mediated inotropic response, whereas the NO donor Sin-1 increased this response. The effects were absent during PDE3 inhibition, suggesting cGMP-dependent inhibition of PDE3. However, in contrast to the effects on the 5-HT4 response, Sin-1 inhibited whereas l-NAME and ODQ enhanced the β1-AR-mediated inotropic response. cGMP generated both by particulate (NPR-B) and soluble GC increases the 5-HT4-mediated inotropic response in failing hearts, probably through inhibition of PDE3. β1-AR and 5-HT4 receptor signalling are subject to opposite regulatory control by cGMP generated by soluble GC in failing hearts. Thus, cGMP from different sources is functionally compartmented, giving differential regulation of different Gs-coupled receptors
    corecore