15 research outputs found

    Molecular Cytogenetic Mapping of Chromosomal Fragments and Immunostaining of Kinetochore Proteins in Beta

    Get PDF
    By comparative multicolor FISH, we have physically mapped small chromosome fragments in the sugar beet addition lines PRO1 and PAT2 and analyzed the distribution of repetitive DNA families in species of the section Procumbentes of the genus Beta. Six repetitive probes were applied, including genotype-specific probes—satellites pTS4.1, pTS5, and pRp34 and a dispersed repeat pAp4, the telomere (TTTAGGG)n, and the conserved 18S-5.8S-25S rRNA genes. Pachytene-FISH analysis of the native centromere organization allowed proposing the origin of PRO1 and PAT2 fragments. Comparative analysis of the repetitive DNA distribution and organization in the wild beet and in the addition lines allowed the development of a physical model of the chromosomal fragments. Immunostaining revealed that the PRO1 chromosome fragment binds α-tubulin and the serine 10-phosphorylated histone H3 specific for the active centromere. This is the first experimental detection of the kinetochore proteins in Beta showing their active involvement in chromosome segregation in mitosis

    Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris)

    Get PDF
    Kowar T, Zakrzewski F, Macas J, et al. Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC Plant Biology. 2016;16(1): 120.Background Sugar beet (Beta vulgaris) is an important crop of temperate climate zones, which provides nearly 30 % of the world’s annual sugar needs. From the total genome size of 758 Mb, only 567 Mb were incorporated in the recently published genome sequence, due to the fact that regions with high repetitive DNA contents (e.g. satellite DNAs) are only partially included. Therefore, to fill these gaps and to gain information about the repeat composition of centromeres and heterochromatic regions, we performed chromatin immunoprecipitation followed by sequencing (ChIP-Seq) using antibodies against the centromere-specific histone H3 variant of sugar beet (CenH3) and the heterochromatic mark of dimethylated lysine 9 of histone H3 (H3K9me2). Results ChIP-Seq analysis revealed that active centromeres containing CenH3 consist of the satellite pBV and the Ty3-gypsy retrotransposon Beetle7, while heterochromatin marked by H3K9me2 exhibits heterogeneity in repeat composition. H3K9me2 was mainly associated with the satellite family pEV, the Ty1-copia retrotransposon family Cotzilla and the DNA transposon superfamily of the En/Spm type. In members of the section Beta within the genus Beta, immunostaining using the CenH3 antibody was successful, indicating that orthologous CenH3 proteins are present in closely related species within this section. Conclusions The identification of repetitive genome portions by ChIP-Seq experiments complemented the sugar beet reference sequence by providing insights into the repeat composition of poorly characterized CenH3-chromatin and H3K9me2-heterochromatin. Therefore, our work provides the basis for future research and application concerning the sugar beet centromere and repeat rich heterochromatic regions characterized by the presence of H3K9me2

    Molecular-cytogenetic analysis of repetitive sequences in genomes of Beta species and hybrids

    Get PDF
    The elucidation of the composition and organization of genomes of higher plants is a fundamental problem of modern molecular biology. The genus Beta containing 14 species assigned to the sections Beta, Corollinae, Nanae and Procumbentes provides a suitable system for the comparative study of the nuclear genomes. Sugar beet Beta vulgaris has a genome size of 758 Mbp DNA with estimated 63 % repetitive sequences and the number of chromosomes n=9. The wild beet Beta procumbens is an important natural pool of resistance against pests and tolerance to unfavorable growth conditions. The subject of this research was the isolation and description of new repetitive DNA families from genomes of this Beta species. This work presents the molecular investigation and cytogenetic characterization by high-resolution multicolor fluorescent in situ hybridization (FISH) of the satellite and dispersed repetitive sequences in wild and cultivated beet species and in their hybrids. New repetitive sequences were isolated from the B. procumbens genome. The AluI restriction satellite repeats pAp11 are 229-246 bp long and form subfamilies. The satellite is amplified in the section Procumbentes, but also found in distantly related section Beta. Thus, pAp11 is probably an ancient component of Beta genomes. It could be the ancestor of the satellite subfamily pEV4 in B. vulgaris based on sequence analysis, Southern hybridization and comparative FISH. pAp11 was found at centromeric and a few intercalary sites in B. procumbens and formed intercalary blocks on B. vulgaris chromosomes where it co-localized with pEV4. These remarkable differences in the chromosomal position of pAp11 between Procumbentes and Beta species indicate that both satellites were likely involved in the expansion or rearrangement of the intercalary heterochromatin of B. vulgaris. Other two sequence families characterized on molecular, genomic and chromosomal levels are the non-homologous repeats pAp4 and pAp22, 1354 and 582 bp long. They have a dispersed organization in the genome and are widely scattered along B. procumbens chromosomes. pAp4 and pAp22 are specific for the section Procumbentes and can be used as DNA probes to discriminate parental genomes in interspecific hybrids. High-resolution FISH on meiotic chromosomes showed that the both sequences mostly co-localize. The PCR analysis of their flanking regions revealed that pAp22 is a part of a Long Terminal Repeat (LTR) of an Athila-like env-class retrotransposon. This is the first indication that the retrovirus-like DNA elements exist in Beta. An ancient family of subtelomeric satellite DNA pAv34 was isolated from all four sections of the genus Beta and from spinach, a related Chenopodiaceae. Five clones were analyzed from each of the five species. The genomic organization and species distribution of the satellites were studied by sequencing and Southern hybridization. The repeating units in all families are 344-362 bp long and share 46.2-98.8 % similarity. Each monomer consists of two subunits SU1 and SU2 of 165-184 bp. The maximum likelihood and neighbor joining analyses of the 25 subtelomeric satellite monomers and their subunits indicated, that the duplication leading to the emergence of the 360 bp satellite should have occurred early in the phylogeny. The two directions of diversification are the clustering of satellites in two groups of subunits SU1 and SU2 and the arrangement of satellite repeats in section-specific groups. The comparative chromosomal localization of the telomeric repeat, pAv34 and rDNA was investigated by multicolor FISH. B. vulgaris chromosome termini showed unique physical organization of telomeric repeat and the subtelomeric satellite, as studied by high-resolution FISH on extended DNA fibers. The estimated length of the telomeric array was 0.55 - 62.65 kb, the length of pAv34 was 5.0-125.25 kb, the spacer between these sequences spanned 1.0-16.60 kb. Eight various classes of repeats were used to characterize the minichromosomes of the sugar beet fragment addition lines PRO1 and PAT2 by comparative multi-color FISH. The study allowed to propose a schematic pattern of repetitive DNA organization on the PRO1 and PAT2 minichromosomes. PRO1 has an acrocentric minichromosome, while PAT2 possesses a metacentric or submetacentric chromosome fragment. The functional integrity of the fragment addition line centromeres was confirmed by an immunostaining localization of the proteins specific to the active kinetochore. The serine 10-phosphorylated histone H3 was detected in pericentromeric regions of the PRO1 chromosomes. The microtubuli attachment sites were visualized as parts of kinetochore complexes

    Molecular-cytogenetic analysis of repetitive sequences in genomes of Beta species and hybrids

    No full text
    The elucidation of the composition and organization of genomes of higher plants is a fundamental problem of modern molecular biology. The genus Beta containing 14 species assigned to the sections Beta, Corollinae, Nanae and Procumbentes provides a suitable system for the comparative study of the nuclear genomes. Sugar beet Beta vulgaris has a genome size of 758 Mbp DNA with estimated 63 % repetitive sequences and the number of chromosomes n=9. The wild beet Beta procumbens is an important natural pool of resistance against pests and tolerance to unfavorable growth conditions. The subject of this research was the isolation and description of new repetitive DNA families from genomes of this Beta species. This work presents the molecular investigation and cytogenetic characterization by high-resolution multicolor fluorescent in situ hybridization (FISH) of the satellite and dispersed repetitive sequences in wild and cultivated beet species and in their hybrids. New repetitive sequences were isolated from the B. procumbens genome. The AluI restriction satellite repeats pAp11 are 229-246 bp long and form subfamilies. The satellite is amplified in the section Procumbentes, but also found in distantly related section Beta. Thus, pAp11 is probably an ancient component of Beta genomes. It could be the ancestor of the satellite subfamily pEV4 in B. vulgaris based on sequence analysis, Southern hybridization and comparative FISH. pAp11 was found at centromeric and a few intercalary sites in B. procumbens and formed intercalary blocks on B. vulgaris chromosomes where it co-localized with pEV4. These remarkable differences in the chromosomal position of pAp11 between Procumbentes and Beta species indicate that both satellites were likely involved in the expansion or rearrangement of the intercalary heterochromatin of B. vulgaris. Other two sequence families characterized on molecular, genomic and chromosomal levels are the non-homologous repeats pAp4 and pAp22, 1354 and 582 bp long. They have a dispersed organization in the genome and are widely scattered along B. procumbens chromosomes. pAp4 and pAp22 are specific for the section Procumbentes and can be used as DNA probes to discriminate parental genomes in interspecific hybrids. High-resolution FISH on meiotic chromosomes showed that the both sequences mostly co-localize. The PCR analysis of their flanking regions revealed that pAp22 is a part of a Long Terminal Repeat (LTR) of an Athila-like env-class retrotransposon. This is the first indication that the retrovirus-like DNA elements exist in Beta. An ancient family of subtelomeric satellite DNA pAv34 was isolated from all four sections of the genus Beta and from spinach, a related Chenopodiaceae. Five clones were analyzed from each of the five species. The genomic organization and species distribution of the satellites were studied by sequencing and Southern hybridization. The repeating units in all families are 344-362 bp long and share 46.2-98.8 % similarity. Each monomer consists of two subunits SU1 and SU2 of 165-184 bp. The maximum likelihood and neighbor joining analyses of the 25 subtelomeric satellite monomers and their subunits indicated, that the duplication leading to the emergence of the 360 bp satellite should have occurred early in the phylogeny. The two directions of diversification are the clustering of satellites in two groups of subunits SU1 and SU2 and the arrangement of satellite repeats in section-specific groups. The comparative chromosomal localization of the telomeric repeat, pAv34 and rDNA was investigated by multicolor FISH. B. vulgaris chromosome termini showed unique physical organization of telomeric repeat and the subtelomeric satellite, as studied by high-resolution FISH on extended DNA fibers. The estimated length of the telomeric array was 0.55 - 62.65 kb, the length of pAv34 was 5.0-125.25 kb, the spacer between these sequences spanned 1.0-16.60 kb. Eight various classes of repeats were used to characterize the minichromosomes of the sugar beet fragment addition lines PRO1 and PAT2 by comparative multi-color FISH. The study allowed to propose a schematic pattern of repetitive DNA organization on the PRO1 and PAT2 minichromosomes. PRO1 has an acrocentric minichromosome, while PAT2 possesses a metacentric or submetacentric chromosome fragment. The functional integrity of the fragment addition line centromeres was confirmed by an immunostaining localization of the proteins specific to the active kinetochore. The serine 10-phosphorylated histone H3 was detected in pericentromeric regions of the PRO1 chromosomes. The microtubuli attachment sites were visualized as parts of kinetochore complexes

    Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris

    Get PDF
    The transition from vegetative growth to reproductive development is a complex process that requires an integrated response to multiple environmental cues and endogenous signals. In Arabidopsis thaliana, which has a facultative requirement for vernalization and long days, the genes of the autonomous pathway function as floral promoters by repressing the central repressor and vernalization-regulatory gene FLC. Environmental regulation by seasonal changes in daylength is under control of the photoperiod pathway and its key gene CO. The root and leaf crop species Beta vulgaris in the caryophyllid clade of core eudicots, which is only very distantly related to Arabidopsis, is an obligate long-day plant and includes forms with or without vernalization requirement. FLC and CO homologues with related functions in beet have been identified, but the presence of autonomous pathway genes which function in parallel to the vernalization and photoperiod pathways has not yet been reported. Here, this begins to be addressed by the identification and genetic mapping of full-length homologues of the RNA-regulatory gene FLK and the chromatin-regulatory genes FVE, LD, and LDL1. When overexpressed in A. thaliana, BvFLK accelerates bolting in the Col-0 background and fully complements the late-bolting phenotype of an flk mutant through repression of FLC. In contrast, complementation analysis of BvFVE1 and the presence of a putative paralogue in beet suggest evolutionary divergence of FVE homologues. It is further shown that BvFVE1, unlike FVE in Arabidopsis, is under circadian clock control. Together, the data provide first evidence for evolutionary conservation of components of the autonomous pathway in B. vulgaris, while also suggesting divergence or subfunctionalization of one gene. The results are likely to be of broader relevance because B. vulgaris expands the spectrum of evolutionarily diverse species which are subject to differential developmental and/or environmental regulation of floral transition.Peer reviewedFinal Published versio

    Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome

    No full text
    Wollrab C, Heitkam T, Holtgräwe D, et al. Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome. The Plant Journal. 2012;72(4):636-651.LTR retrotransposons and retroviruses are closely related. Although a viral envelope gene is found in some LTR retrotransposons and all retroviruses, only the latter show infectivity. The identification of Ty3-gypsy-like retrotransposons possessing putative envelope-like open reading frames blurred the taxonomical borders and led to the establishment of the Errantivirus, Metavirus and Chromovirus genera within the Metaviridae. Only a few plant Errantiviruses have been described, and their evolutionary history is not well understood. In this study, we investigated 27 retroelements of four abundant Elbe retrotransposon families belonging to the Errantiviruses in Beta vulgaris (sugar beet). Retroelements of the Elbe lineage integrated between 0.02 and 5.59 million years ago, and show family-specific variations in autonomy and degree of rearrangements: while Elbe3 members are highly fragmented, often truncated and present in a high number of solo LTRs, Elbe2 members are mainly autonomous. We observed extensive reshuffling of structural motifs across families, leading to the formation of new retrotransposon families. Elbe retrotransposons harbor a typical envelope-like gene, often encoding transmembrane domains. During the course of Elbe evolution, the additional open reading frames have been strongly modified or independently acquired. Taken together, the Elbe lineage serves as retrotransposon model reflecting the various stages in Errantivirus evolution, and allows a detailed analysis of retrotransposon family formation
    corecore