821 research outputs found

    Construction and analysis of vectors based on bovine papilloma virus

    Get PDF

    The role of Schizosaccharomyces pombe SUMO ligases in genome stability

    Get PDF
    SUMOylation is a post-translational modification that affects a large number of proteins, many of which are nuclear. While the role of SUMOylation is beginning to be elucidated, it is clear that understanding the mechanisms that regulate the process is likely to be important. Control of the levels of SUMOylation is brought about through a balance of conjugating and deconjugating activities, i.e. of SUMO (small ubiquitin-related modifier) conjugators and ligases versus SUMO proteases. Although conjugation of SUMO to proteins can occur in the absence of a SUMO ligase, it is apparent that SUMO ligases facilitate the SUMOylation of specific subsets of proteins. Two SUMO ligases in Schizosaccharomyces pombe, Pli1 and Nse2, have been identified, both of which have roles in genome stability. We report here on a comparison between the properties of the two proteins and discuss potential roles for the proteins

    Introduction of large linear minichromosomes into Schizosaccharomyces pombe by an improved transformation procedure

    Get PDF
    The efficiency of transformation of Schizosaccharomyces pombe has been increased 10- to 50-fold over previously reported methods. By using 1 microgram of plasmid, 7.0 x 10(5) transformants are regularly obtained. This increased transformation efficiency is mainly due to the inclusion of the cationic liposome-forming reagent Lipofectin in the protocol. Various parameters affecting transformation of Sc. pombe in the presence of Lipofectin have been examined. Lipofectin can also be used to increase transformation efficiency in Saccharomyces cerevisiae. It is also demonstrated that by using this improved transformation procedure, linear minichromosomes of greater than 500 kilobases can be introduced into Sc. pombe with relative ease. These minichromosomes can replicate as stable linear molecules upon reintroduction into Sc. pombe, demonstrating that Sc. pombe telomeres retain function when reintroduced as naked DNA. The ability of Sc. pombe to admit large DNA molecules indicates that it should be feasible to clone large DNA from other organisms in Sc. pombe

    Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation

    Get PDF
    Fission yeast centromeres are composed of two domains: the central core and the outer repeats. Although both regions are required for full centromere function, the central core has a distinct chromatin structure and is likely to underlie the kinetochore itself, as it is associated with centromere-specific proteins. Genes placed within either region are transcriptionally silenced, reflecting the formation of a functional kinetochore complex and flanking centromeric heterochromatin. Here, transcriptional silencing was exploited to identify components involved in central core silencing and kinetochore assembly or structure. The resulting sim (silencing in the middle of the centromere) mutants display severe chromosome segregation defects. sim2+ encodes a known kinetochore protein, the centromere-specific histone H3 variant Cnp1CENP-A. sim4+ encodes a novel essential coiled-coil protein, which is specifically associated with the central core region and is required for the unusual chromatin structure of this region. Sim4 coimmunoprecipitates with the central core component Mis6 and, like Mis6, affects Cnp1CENP-A association with the central domain. Functional Mis6 is required for Sim4 localization at the kinetochore. Our analyses illustrate the fundamental link between silencing, chromatin structure, and kinetochore function, and establish defective silencing as a powerful approach for identifying proteins required to build a functional kinetochore

    Extensive telomere repeat arrays in mouse are hypervariable

    Get PDF
    In this study we have analysed mouse telomeres by Pulsed Field Gel Electrophoresis (PFGE). A number of specific restriction fragments hybridising to a (TTA-GGG)4 probe in the size range 50-150kb can be detected. These fragments are devoid of sites for most restriction enzymes suggesting that they comprise simple repeats; we argue that most of these are likely to be (TTAGGG)n. Each discrete fragment corresponds to the telomere of an individual chromosome and segregates as a Mendelian character. However, new size variants are being generated in the germ line at very high rates such that inbred mice are heterozygous at all telomeres analysable. In addition we show that specific small (approximately 4-12kb) fragments can be cleaved within some terminal arrays by the restriction enzyme MnII which recognises 5'(N7)GAGG3'. Like the complete telomere-repeat arrays (TRA's) these fragments form new variants at high rates and possibly by the same process. We speculate on the mechanisms that may be involved

    Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast

    Get PDF
    The inheritance of the histone H3 variant CENP-A in nucleosomes at centromeres following DNA replication is mediated by an epigenetic mechanism. To understand the process of epigenetic inheritance, or propagation of histones and histone variants, as nucleosomes are disassembled and reassembled in living eukaryotic cells, we have explored the feasibility of exploiting photo-activated localization microscopy (PALM). PALM of single molecules in living cells has the potential to reveal new concepts in cell biology, providing insights into stochastic variation in cellular states. However, thus far, its use has been limited to studies in bacteria or to processes occurring near the surface of eukaryotic cells. With PALM, one literally observes and 'counts' individual molecules in cells one-by-one and this allows the recording of images with a resolution higher than that determined by the diffraction of light (the so-called super-resolution microscopy). Here, we investigate the use of different fluorophores and develop procedures to count the centromere-specific histone H3 variant CENP-A(Cnp1) with single-molecule sensitivity in fission yeast (Schizosaccharomyces pombe). The results obtained are validated by and compared with ChIP-seq analyses. Using this approach, CENP-A(Cnp1) levels at fission yeast (S. pombe) centromeres were followed as they change during the cell cycle. Our measurements show that CENP-A(Cnp1) is deposited solely during the G2 phase of the cell cycle

    Heterochromatin and RNAi Are Required to Establish CENP-A Chromatin at Centromeres

    Get PDF
    Heterochromatin is defined by distinct posttranslational modifications on histones, such as methylation of histone H3 at lysine 9 (H3K9), which allows heterochromatin protein 1 (HP1)–related chromodomain proteins to bind. Heterochromatin is frequently found near CENP-A chromatin, which is the key determinant of kinetochore assembly. We have discovered that the RNA interference (RNAi)–directed heterochromatin flanking the central kinetochore domain at fission yeast centromeres is required to promote CENP-A(Cnp1) and kinetochore assembly over the central domain. The H3K9methyltransferase Clr4 (Suv39); the ribonuclease Dicer, which cleaves heterochromatic double-stranded RNA to small interfering RNA (siRNA); Chp1, a component of the RNAi effector complex (RNA-induced initiation of transcriptional gene silencing; RITS); and Swi6 (HP1) are required to establish CENP-A(Cnp1) chromatin on naïve templates. Once assembled, CENP-A(Cnp1) chromatin is propagated by epigenetic means in the absence of heterochromatin. Thus, another, potentially conserved, role for centromeric RNAi-directed heterochromatin has been identified

    Transcription-coupled changes to chromatin underpin gene silencing by transcriptional interference

    Get PDF
    Long non-coding RNA (lncRNA) transcription into a downstream promoter frequently results in transcriptional interference. However, the mechanism of this repression is not fully understood. We recently showed that drug tolerance in fission yeast Schizosaccharomyces pombe is controlled by lncRNA transcription upstream of the tgp1(+) permease gene. Here we demonstrate that transcriptional interference of tgp1(+) involves several transcription-coupled chromatin changes mediated by conserved elongation factors Set2, Clr6CII, Spt6 and FACT. These factors are known to travel with RNAPII and establish repressive chromatin in order to limit aberrant transcription initiation from cryptic promoters present in gene bodies. We therefore conclude that conserved RNAPII-associated mechanisms exist to both suppress intragenic cryptic promoters during genic transcription and to repress gene promoters by transcriptional interference. Our analyses also demonstrate that key mechanistic features of transcriptional interference are shared between S. pombe and the highly divergent budding yeast Saccharomyces cerevisiae. Thus, transcriptional interference is an ancient, conserved mechanism for tightly controlling gene expression. Our mechanistic insights allowed us to predict and validate a second example of transcriptional interference involving the S. pombe pho1(+) gene. Given that eukaryotic genomes are pervasively transcribed, transcriptional interference likely represents a more general feature of gene regulation than is currently appreciated

    Establishment of centromere identity is dependent on nuclear spatial organization

    Get PDF
    The establishment of centromere-specific CENP-A chromatin is influenced by epigenetic and genetic processes. Central domain sequences from fission yeast centromeres are preferred substrates for CENP-A(Cnp1) incorporation, but their use is context dependent, requiring adjacent heterochromatin. CENP-A(Cnp1) overexpression bypasses heterochromatin dependency, suggesting that heterochromatin ensures exposure to conditions or locations permissive for CENP-A(Cnp1) assembly. Centromeres cluster around spindle-pole bodies (SPBs). We show that heterochromatin-bearing minichromosomes localize close to SPBs, consistent with this location promoting CENP-A(Cnp1) incorporation. We demonstrate that heterochromatin-independent de novo CENP-A(Cnp1) chromatin assembly occurs when central domain DNA is placed near, but not far from, endogenous centromeres or neocentromeres. Moreover, direct tethering of central domain DNA at SPBs permits CENP-A(Cnp1) assembly, suggesting that the nuclear compartment surrounding SPBs is permissive for CENP-A(Cnp1) incorporation because target sequences are exposed to high levels of CENP-A(Cnp1) and associated assembly factors. Thus, nuclear spatial organization is a key epigenetic factor that influences centromere identity

    Hairpin RNAs and Retrotransposon LTRs Effect RNAi and Chromatin-Based Gene Silencing

    Get PDF
    The expression of short hairpin RNAs in several organisms silences gene expression by targeted mRNA degradation. This RNA interference (RNAi) pathway can also affect the genome, as DNA methylation arises at loci homologous to the target RNA in plants. We demonstrate in fission yeast that expression of a synthetic hairpin RNA is sufficient to silence the homologous locus in trans and causes the assembly of a patch of silent Swi6 chromatin with cohesin. This requires components of the RNAi machinery and Clr4 histone methyltransferase for small interfering RNA generation. A similar process represses several meiotic genes through nearby retrotransposon long terminal repeats (LTRs). These analyses directly implicate interspersed LTRs in regulating gene expression during cellular differentiation
    • …
    corecore