113 research outputs found

    Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy)

    Full text link
    The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in March-April 2013 and January 2015, combined with the improved observational capabilities of submillimeter facilities, offered an opportunity to carry out sensitive compositional and isotopic studies of the volatiles in their coma. We observed comet Lovejoy with the IRAM 30m telescope between 13 and 26 January 2015, and with the Odin submillimeter space observatory on 29 January - 3 February 2015. We detected 22 molecules and several isotopologues. The H216_2^{16}O and H218_2^{18}O production rates measured with Odin follow a periodic pattern with a period of 0.94 days and an amplitude of ~25%. The inferred isotope ratios in comet Lovejoy are 16^{16}O/18^{18}O = 499 ±\pm 24 and D/H = 1.4 ±\pm 0.4 ×104\times 10^{-4} in water, 32^{32}S/34^{34}S = 24.7 ±\pm 3.5 in CS, all compatible with terrestrial values. The ratio 12^{12}C/13^{13}C = 109 ±\pm 14 in HCN is marginally higher than terrestrial and 14^{14}N/15^{15}N = 145 ±\pm 12 in HCN is half the Earth ratio. Several upper limits for D/H or 12C/13C in other molecules are reported. From our observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio in an Oort Cloud comet that is not larger than the terrestrial value. On the other hand, the observation of the same HDO line in the other Oort-cloud comet, C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous measurements of D/H in cometary water, this illustrates that a diversity in the D/H ratio and in the chemical composition, is present even within the same dynamical group of comets, suggesting that current dynamical groups contain comets formed at very different places or times in the early solar system.Comment: Accepted for publication in Astronomy and Astrophysic

    Range Expansion Drives Dispersal Evolution In An Equatorial Three-Species Symbiosis

    Get PDF
    A-09-14International audienceBackground Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions. Methodology/Principal Findings We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists –an ant-plant and its protective ant– and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants. Conclusions/Significance Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated with dispersal are affected by the range expansion dynamics of a set of interacting species

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Asymmetric Dispersal and Colonization Success of Amazonian Plant-Ants Queens

    Get PDF
    The dispersal ability of queens is central to understanding ant life-history evolution, and plays a fundamental role in ant population and community dynamics, the maintenance of genetic diversity, and the spread of invasive ants. In tropical ecosystems, species from over 40 genera of ants establish colonies in the stems, hollow thorns, or leaf pouches of specialized plants. However, little is known about the relative dispersal ability of queens competing for access to the same host plants. We used empirical data and inverse modeling—a technique developed by plant ecologists to model seed dispersal—to quantify and compare the dispersal kernels of queens from three Amazonian ant species that compete for access to host-plants. We found that the modal colonization distance of queens varied 8-fold, with the generalist ant species (Crematogaster laevis) having a greater modal distance than two specialists (Pheidole minutula, Azteca sp.) that use the same host-plants. However, our results also suggest that queens of Azteca sp. have maximal distances that are four-sixteen times greater than those of its competitors. We found large differences between ant species in both the modal and maximal distance ant queens disperse to find vacant seedlings used to found new colonies. These differences could result from interspecific differences in queen body size, and hence wing musculature, or because queens differ in their ability to identify potential host plants while in flight. Our results provide support for one of the necessary conditions underlying several of the hypothesized mechanisms promoting coexistence in tropical plant-ants. They also suggest that for some ant species limited dispersal capability could pose a significant barrier to the rescue of populations in isolated forest fragments. Finally, we demonstrate that inverse models parameterized with field data are an excellent means of quantifying the dispersal of ant queens

    Hydrogen sulphide-induced hypometabolism in human-sized porcine kidneys

    Get PDF
    Background Since the start of organ transplantation, hypothermia-forced hypometabolism has been the cornerstone in organ preservation. Cold preservation showed to protect against ischemia, although post-transplant injury still occurs and further improvement in preservation techniques is needed. We hypothesize that hydrogen sulphide can be used as such a new preservation method, by inducing a reversible hypometabolic state in human sized kidneys during normothermic machine perfusion. Methods Porcine kidneys were connected to an ex-vivo isolated, oxygen supplemented, normothermic blood perfusion set-up. Experimental kidneys (n = 5) received a 85mg NaHS infusion of 100 ppm and were compared to controls (n = 5). As a reflection of the cellular metabolism, oxygen consumption, mitochondrial activity and tissue ATP levels were measured. Kidney function was assessed by creatinine clearance and fractional excretion of sodium. To rule out potential structural and functional deterioration, kidneys were studied for biochemical markers and histology. Results Hydrogen sulphide strongly decreased oxygen consumption by 61%, which was associated with a marked decrease in mitochondrial activity/function, without directly affecting ATP levels. Renal biological markers, renal function and histology did not change after hydrogen sulphide treatment. Conclusion In conclusion, we showed that hydrogen sulphide can induce a controllable hypometabolic state in a human sized organ, without damaging the organ itself and could thereby be a promising therapeutic alternative for cold preservation under normothermic conditions in renal transplantation

    A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae)

    Get PDF
    Background: Conservatism in climatic tolerance may limit geographic range expansion and should enhance the effects of habitat fragmentation on population subdivision. Here we study the effects of historical climate change, and the associated habitat fragmentation, on diversification in the mostly sub-Saharan cucurbit genus Coccinia, which has 27 species in a broad range of biota from semi-arid habitats to mist forests. Species limits were inferred from morphology, and nuclear and plastid DNA sequence data, using multiple individuals for the widespread species. Climatic tolerances were assessed from the occurrences of 1189 geo-referenced collections and WorldClim variables. Results: Nuclear and plastid gene trees included 35 or 65 accessions, representing up to 25 species. The data revealed four species groups, one in southern Africa, one in Central and West African rain forest, one widespread but absent from Central and West African rain forest, and one that occurs from East Africa to southern Africa. A few individuals are differently placed in the plastid and nuclear (LFY) trees or contain two ITS sequence types, indicating hybridization. A molecular clock suggests that the diversification of Coccinia began about 6.9 Ma ago, with most of the extant species diversity dating to the Pliocene. Ancestral biome reconstruction reveals six switches between semi-arid habitats, woodland, and forest, and members of several species pairs differ significantly in their tolerance of different precipitation regimes. Conclusions: The most surprising findings of this study are the frequent biome shifts (in a relatively small clade) over just 6 - 7 million years and the limited diversification during and since the Pleistocene. Pleistocene climate oscillations may have been too rapid or too shallow for full reproductive barriers to develop among fragmented populations of Coccinia, which would explain the apparently still ongoing hybridization between certain species. Steeper ecological gradients in East Africa and South Africa appear to have resulted in more advanced allopatric speciation there

    Examination of Late Palaeolithic archaeological sites in northern Europe for the preservation of cryptotephra layers

    Get PDF
    We report the first major study of cryptotephra (non-visible volcanic ash layers) on Late Palaeolithic archaeological sites in northern Europe. Examination of 34 sites dating from the Last Termination reveals seven with identifiable cryptotephra layers. Preservation is observed in minerogenic and organic deposits, although tephra is more common in organic sediments. Cryptotephra layers normally occur stratigraphically above or below the archaeology. Nearby off-site palaeoclimate archives (peat bogs and lakes <0.3 km distant) were better locations for detecting tephra. However in most cases the archaeology can only be correlated indirectly with such cryptotephras. Patterns affecting the presence/absence of cryptotephra include geographic position of sites relative to the emitting volcanic centre; the influence of past atmospherics on the quantity, direction and patterns of cryptotephra transport; the nature and timing of local site sedimentation; sampling considerations and subsequent taphonomic processes. Overall, while tephrostratigraphy has the potential to improve significantly the chronology of such sites many limiting factors currently impacts the successful application

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants

    The RESET project: constructing a European tephra lattice for refined synchronisation of environmental and archaeological events during the last c. 100 ka

    Get PDF
    This paper introduces the aims and scope of the RESET project (. RESponse of humans to abrupt Environmental Transitions), a programme of research funded by the Natural Environment Research Council (UK) between 2008 and 2013; it also provides the context and rationale for papers included in a special volume of Quaternary Science Reviews that report some of the project's findings. RESET examined the chronological and correlation methods employed to establish causal links between the timing of abrupt environmental transitions (AETs) on the one hand, and of human dispersal and development on the other, with a focus on the Middle and Upper Palaeolithic periods. The period of interest is the Last Glacial cycle and the early Holocene (c. 100-8 ka), during which time a number of pronounced AETs occurred. A long-running topic of debate is the degree to which human history in Europe and the Mediterranean region during the Palaeolithic was shaped by these AETs, but this has proved difficult to assess because of poor dating control. In an attempt to move the science forward, RESET examined the potential that tephra isochrons, and in particular non-visible ash layers (cryptotephras), might offer for synchronising palaeo-records with a greater degree of finesse. New tephrostratigraphical data generated by the project augment previously-established tephra frameworks for the region, and underpin a more evolved tephra 'lattice' that links palaeo-records between Greenland, the European mainland, sub-marine sequences in the Mediterranean and North Africa. The paper also outlines the significance of other contributions to this special volume: collectively, these illustrate how the lattice was constructed, how it links with cognate tephra research in Europe and elsewhere, and how the evidence of tephra isochrons is beginning to challenge long-held views about the impacts of environmental change on humans during the Palaeolithic. © 2015 Elsevier Ltd.RESET was funded through Consortium Grants awarded by the Natural Environment Research Council, UK, to a collaborating team drawn from four institutions: Royal Holloway University of London (grant reference NE/E015905/1), the Natural History Museum, London (NE/E015913/1), Oxford University (NE/E015670/1) and the University of Southampton, including the National Oceanography Centre (NE/01531X/1). The authors also wish to record their deep gratitude to four members of the scientific community who formed a consultative advisory panel during the lifetime of the RESET project: Professor Barbara Wohlfarth (Stockholm University), Professor Jørgen Peder Steffensen (Niels Bohr Institute, Copenhagen), Dr. Martin Street (Romisch-Germanisches Zentralmuseum, Neuwied) and Professor Clive Oppenheimer (Cambridge University). They provided excellent advice at key stages of the work, which we greatly valued. We also thank Jenny Kynaston (Geography Department, Royal Holloway) for construction of several of the figures in this paper, and Debbie Barrett (Elsevier) and Colin Murray Wallace (Editor-in-Chief, QSR) for their considerable assistance in the production of this special volume.Peer Reviewe
    corecore