39 research outputs found

    Orbital fluctuations in the different phases of LaVO3 and YVO3

    Get PDF
    We investigate the importance of quantum orbital fluctuations in the orthorhombic and monoclinic phases of the Mott insulators LaVO3 and YVO3. First, we construct ab-initio material-specific t2g Hubbard models. Then, by using dynamical mean-field theory, we calculate the spectral matrix as a function of temperature. Our Hubbard bands and Mott gaps are in very good agreement with spectroscopy. We show that in orthorhombic LaVO3, quantum orbital fluctuations are strong and that they are suppressed only in the monoclinic 140 K phase. In YVO3 the suppression happens already at 300 K. We show that Jahn-Teller and GdFeO3-type distortions are both crucial in determining the type of orbital and magnetic order in the low temperature phases.Comment: 4 pages, 3 figures, final version. To appear in PR

    Evidence of Substructure in the Cluster of Galaxies A3558

    Get PDF
    We investigate the dynamical properties of the cluster of galaxies A3558 (Shapley 8). Studying a region of one square degree (\sim 3 Mpc2^2) centered on the cluster cD galaxy, we have obtained a statistically complete photometric catalog with positions and magnitudes of 1421 galaxies (down to a limiting magnitude of B21B \sim 21). This catalog has been matched to the recent velocity data obtained by Mazure et al. (1997) and from the literature, yielding a radial velocity catalog containing 322 galaxies. Our analysis shows that the position/velocity space distribution of galaxies shows significant substructure. A central bimodal core detected previously in preliminary studies is confirmed by using the Adaptive Kernel Technique and Wavelet Analysis. We show that this central bimodal subtructure is nevertheless composed of a projected feature, kinematically unrelated to the cluster, plus a group of galaxies probably in its initial merging phase into a relaxed core. The cD velocity offset with respect to the average cluster redshift, reported earlier by several authors, is completely eliminated as a result of our dynamical analysis. The untangling of the relaxed core component also allows a better, more reliable determination of the central velocity dispersion, which in turn eliminates the ``β\beta-problem'' for A3558. The cluster also shows a ``preferential'' distribution of subclumps coinciding with the direction of the major axis position angle of the cD galaxy and of the central X-ray emission ellipsoidal distribution, in agreement with an anisotropic merger scenario.Comment: 35 pages in latex, 17 figures in Postscript, accepted for publication in the Astrophysical Journa

    Simulations of galactic winds and starbursts in galaxy clusters

    Full text link
    We present an investigation of the metal enrichment of the intra-cluster medium (ICM) by galactic winds and merger-driven starbursts. We use combined N-body/hydrodynamic simulations with a semi-numerical galaxy formation model. The mass loss by galactic winds is obtained by calculating transonic solutions of steady state outflows, driven by thermal, cosmic ray and MHD wave pressure. The inhomogeneities in the metal distribution caused by these processes are an ideal tool to reveal the dynamical state of a galaxy cluster. We present surface brightness, X-ray emission weighted temperature and metal maps of our model clusters as they would be observed by X-ray telescopes like XMM-Newton. We show that X-ray weighted metal maps distinguish between pre- or post-merger galaxy clusters by comparing the metallicity distribution with the galaxy-density distribution: pre-mergers have a metallicity gap between the subclusters, post-mergers a high metallicity between subclusters. We apply our approach to two observed galaxy clusters, Abell 3528 and Abell 3921, to show whether they are pre- or post-merging systems. The survival time of the inhomogeneities in the metallicity distribution found in our simulations is up to several Gyr. We show that galactic winds and merger-driven starbursts enrich the ICM very efficiently after z=1 in the central (~ 3 Mpc radius) region of a galaxy cluster.Comment: 18 pages, 25 figures, 2 tables, accepted for publication in A&A, more technical details added - results are unaffected, high resolution PDF version is available at http://astro.uibk.ac.at/Kapferer.pd

    Valence electronic structure of Mn in undoped and doped lanthanum manganites from relative K x-ray intensity studies

    Full text link
    Relative KK x-ray intensities of MnMn in MnMn, MnO2MnO_{2}, LaMnO3LaMnO_{3} and La0.7B0.3MnO3La_{0.7}B_{0.3}MnO_{3} (BB = CaCa, SrSr, and CeCe) systems have been measured following excitation by 59.54 keV γ\gamma-rays from a 200 mCi 241^{241}Am point-source. The measured results for the compounds deviate significantly from the results of pure MnMn. Comparison of the experimental data with the multiconfiguration Dirac-Fock (MCDF) effective atomic model calculations indicates reasonable agreement with the predictions of ionic model for the doped {manganites except} that the electron doped La0.7Ce0.3MnO3La_{0.7}Ce_{0.3}MnO_{3} and hole doped La0.7Ca0.3MnO3La_{0.7}Ca_{0.3}MnO_{3} compounds show some small deviations. The results of MnO2MnO_{2} and LaMnO3LaMnO_{3} deviate considerably from the predictions of the ionic model. Our measured Kβ/KαK\beta/K\alpha ratio of MnMn in La0.7Ca0.3MnO3La_{0.7}Ca_{0.3}MnO_{3} cannot be explained as a linear superposition of Kβ/KαK\beta/K\alpha ratios of MnMn for the end members which is in contrast to the recent proposal by Tyson et al. from their MnMn KβK\beta spectra.Comment: 14 pages, 4 figures. to appear in NIM-B.Please send an e-mail for figure

    Recurrent radio outbursts at the center of the NGC1407 galaxy group

    Full text link
    We present deep Giant Metrewave Radio Telescope (GMRT) radio observations at 240, 330 and 610 MHz of the complex radio source at the center of the NGC1407 galaxy group. Previous GMRT observations at 240 MHz revealed faint, diffuse emission enclosing the central twin-jet radio galaxy. This has been interpreted as an indication of two possible radio outbursts occurring at different times. Both the inner double and diffuse component are detected in the new GMRT images at high levels of significance. Combining the GMRT observations with archival Very Large Array data at 1.4 and 4.9 GHz, we derive the total spectrum of both components. The inner double has a spectral index \alpha=0.7, typical for active, extended radio galaxies, whereas the spectrum of the large-scale emission is very steep, with \alpha=1.8 between 240 MHz and 1.4 GHz. The radiative age of the large-scale component is very long, ~300 Myr, compared to ~30 Myr estimated for the central double, confirming that the diffuse component was generated during a former cycle of activity of the central galaxy. The current activity have so far released an energy which is nearly one order of magnitude lower than that associated with the former outburst. The group X-ray emission in the Chandra and XMM-Newton images and extended radio emission show a similar swept-back morphology. We speculate that the two structures are both affected by the motion of the group core, perhaps due to the core sloshing in response to a recent encounter with the nearby elliptical galaxy NGC1400.Comment: 15 pages, 12 figures and 5 tables. Accepted for publication in Ap

    A deep Chandra observation of the poor cluster AWM4 - II. The role of the radio jets in enriching the intra-cluster medium

    Full text link
    We use a Chandra observation of the poor cluster AWM4 to map the temperature and abundance of the intra-cluster medium, so as to examine the influence of the central radio galaxy on its environment. While the cluster core is generally enriched to near-solar abundances, we find evidence of super-solar abundances correlated with the radio jets, extending ~35 kpc from the core of the central dominant galaxy NGC 6051 along its minor axis. We conclude that the enriched gas has been transported out of the central galaxy through the action of the radio source. We estimate the excess mass of iron in the entrained gas to be ~1.4x10^6 Msol, and find that this can be produced in the core of NGC 6051 within the timescale of the AGN outburst. The energy required to transport this gas to its current location is ~4.5x10^57 erg, a significant fraction of the estimated total mechanical energy output of the AGN, though this estimate is dependent on the degree of enrichment of the uplifted gas. The larger near-solar abundance region is also compatible with enrichment by metals mixed outward from NGC 6051 over a much longer timescale.Comment: Accepted for publication in MNRAS, 11 pages, 6 figure

    The Photometric Properties of Isolated Early-Type Galaxies

    Full text link
    Isolated galaxies are important since they probe the lowest density regimes inhabited by galaxies. We define a sample of 36 nearby isolated early-type galaxies for further study. Our isolation criteria require them to have no comparable-mass neighbours within 2 B-band magnitudes, 0.67 Mpc in the plane of the sky and 700 km/s in recession velocity. New wide-field optical imaging of 10 isolated galaxies with the Anglo-Australian Telescope confirms their early-type morphology and relative isolation. We also present imaging of 4 galaxy groups as a control sample. The isolated galaxies are shown to be more gravitationally isolated than the group galaxies. We find that the isolated early-type galaxies have a mean effective colour of (B-R)_e = 1.54 +/- 0.14, similar to their high-density counterparts. They reveal a similar colour-magnitude relation slope and small intrinsic scatter to cluster ellipticals. They also follow the Kormendy relation of surface brightness versus size for luminous cluster galaxies. Such properties suggest that the isolated galaxies formed at a similar epoch to cluster galaxies, such that the bulk of their stars are very old. However, our galaxy modelling reveals evidence for dust lanes, plumes, shells, boxy and disk isophotes in four out of nine galaxies. Thus at least some isolated galaxies have experienced a recent merger/accretion event which may have induced a small burst of star formation. We derive luminosity functions for the isolated galaxies and find a faint slope of -1.2, which is similar to the `universal' slope found in a wide variety of environments. We examine the number density distribution of galaxies in the field of the isolated galaxies.Comment: 16 pages, Latex, 17 figures, 6 tables, MNRAS in pres

    A combined low-radio frequency/X-ray study of galaxy groups I. Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz

    Full text link
    We present new Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz of 18 X-ray bright galaxy groups. These observations are part of an extended project, presented here and in future papers, which combines low-frequency radio and X-ray data to investigate the interaction between central active galactic nuclei (AGN) and the intra-group medium (IGM). The radio images show a very diverse population of group-central radio sources, varying widely in size, power, morphology and spectral index. Comparison of the radio images with Chandra and XMM-Newton X-ray images shows that groups with significant substructure in the X-ray band and marginal radio emission at >= 1 GHz host low-frequency radio structures that correlate with substructures in IGM. Radio-filled X-ray cavities, the most evident form of AGN/IGM interaction in our sample, are found in half of the systems, and are typically associated with small, low- or mid-power double radio sources. Two systems, NGC5044 and NGC4636, possess multiple cavities, which are isotropically distributed around the group center, possibly due to group weather. In other systems the radio/X-ray correlations are less evident. However, the AGN/IGM interaction can manifest itself through the effects of the high-pressure medium on the morphology, spectral properties and evolution of the radio-emitting plasma. In particular, the IGM can confine fading radio lobes in old/dying radio galaxies and prevent them from dissipating quickly. Evidence for radio emission produced by former outbursts that coexist with current activity is found in six groups of the sample.Comment: Accepted for publication in the Astrophysical Journal Supplement Series, 26 pages, 18 figures. A version with high-quality figures is http://www.astro.umd.edu/~simona/giacintucci_hr.pd

    Electronic Structure Calculation by First Principles for Strongly Correlated Electron Systems

    Full text link
    Recent trends of ab initio studies and progress in methodologies for electronic structure calculations of strongly correlated electron systems are discussed. The interest for developing efficient methods is motivated by recent discoveries and characterizations of strongly correlated electron materials and by requirements for understanding mechanisms of intriguing phenomena beyond a single-particle picture. A three-stage scheme is developed as renormalized multi-scale solvers (RMS) utilizing the hierarchical electronic structure in the energy space. It provides us with an ab initio downfolding of the global band structure into low-energy effective models followed by low-energy solvers for the models. The RMS method is illustrated with examples of several materials. In particular, we overview cases such as dynamics of semiconductors, transition metals and its compounds including iron-based superconductors and perovskite oxides, as well as organic conductors of kappa-ET type.Comment: 44 pages including 38 figures, to appear in J. Phys. Soc. Jpn. as an invited review pape
    corecore