1,952 research outputs found

    Study of the influence of phosphoric acid in steel anaerobic corrosion via the hydrogen evolution reaction.

    Get PDF
    Although it is well known that the phosphate species are quiet electrochemically inert when considering their calculated redox potential, few studies since the end of 80’s reported electrochemical phenomenon observed in the reduction domain which were linked to the presence of phosphate species. Some authors proposed that phosphate ions and weak acids in general catalysed the electrochemical reduction of water [1-3] following the kind of reactions written above: Electrochemical reactions H2PO4- + e- Had + HPO42- (1) Had + H2PO4- + e- H2 + HPO42- (2) Acido-basic equilibrium H2PO4- + OH-- H2O + HPO42- (3) Combining the reactions, the reduction of water was obtained 2 H2O + 2e- H2 + 2OH- (4) Marinovic and Despic [1] assumed that the hydrogen evolution was more likely to occur from species other than water, since the bond between the hydrogen atom and the rest of the molecule is weaker in weak acid compared with the hydrogen-oxygen bond in a water molecule. This was shown on silver electrodes [2] and also on platinum ones [1]. In a previous work [3], we showed that phosphate ions exhibited the same electrochemical behaviour on stainless steel. A theoretical model was proposed according to the experimental data the model showed that a significant quantity of molecular hydrogen was produced by the mechanism presented above. In the present paper, the influence of phosphoric acid on hydrogen evolution reaction has been studied by voltammetry on platinum and stainless steel rotating disc electrodes. A linear correlation between acid concentration and the absolute value of the current at certain reduction potential has been verified. The effect of the pH value of the solution in the obtained current has demonstrated to be strongly related to the dissociation state of the acid. In a second part, as the hydrogen evolution reaction is the principal cathodic reaction of metal corrosion in anaerobic aqueous environments, the role that weak acids can play in this process was studied. Corrosion experiments on carbon steel were carried out in phosphoric acid solution under anaerobic conditions. The influence of hydrogen in the solution was also studied. In the absence of oxygen, a substantial increase of corrosion rate was found when carbon steel samples were submerged in low phosphoric acid concentration solution compared to that obtained in distilled water

    Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode

    Get PDF
    The catalytic properties of phosphate species, already shown on the reduction reaction in anaerobic corrosion of steels, are exploited here for hydrogen production. Phosphate species work as a homogeneous catalyst that enhances the cathodic current at mild pH values. A voltammetric study of the hydrogen evolution reaction is performed using phosphate solutions at different concentrations on 316L stainless steel and platinum rotating disk electrodes. Then, hydrogen is produced in an electrolytic cell using a phosphate solution as the catholyte. Results show that 316L stainless steel electrodes have a stable behaviour as cathodes in the electrolysis of phosphate solutions. Phosphate (1 M,pH 4.0/5.0) as the catholyte can equal the performance of a KOH 25%w solution with the advantage of working at mild pH values. The use of phosphate and other weak acids as catalysts of the hydrogen evolution reaction could be a promising technology in the development of electrolysis units that work at mild pH values with low-cost electrodes and construction materials

    Des aspects positifs issus des recherches en biocorrosion : de la production d'hydrogène aux biopiles à combustible

    Get PDF
    La corrosion induite par des microorganismes ou biocorrosion est un problème qui génère de lourdes pertes économiques mondiales (plusieurs milliards d'euros par an). Malgré de nombreux progrès dans la compréhension des mécanismes, la complexité du phénomène a empêché de trouver des solutions définitives au problème et inspire encore beaucoup de travaux de recherche. La participation dans le phénomène de biocorrosion de mécanismes catalytiques induits par les acides faibles a été étudiée dans ce travail. Un autre objectif de la thèse a été d'exploiter les phénomènes catalytiques mis en évidence dans les recherches en biocorrosion pour réaliser d'autres applications : production d'énergie dans des biopiles à combustible ou production d'hydrogène par voie électrochimique dans des conditions douces. Les travaux ont montré que la présence des acides faibles et des acides aminés dans des biofilms pourrait jouer un rôle important dans la biocorrosion des aciers en accélérant le phénomène par la catalyse de la réduction de l'eau. La réversibilité de ce mécanisme, pressentie et prouvée, pourrait expliquer l’augmentation de la corrosion lorsque l'hydrogène produit est évacué (consommation, agitation, …). Par ailleurs, les phosphates permettent la production d'hydrogène par électrolyse dans des conditions douces de pH (pH 4,0 - 8,0) avec une performance égale ou meilleure que celle de l'électrolyse alcaline. Enfin, les matériaux industriels, tels que l'acier et le titane, pourraient être utilisés pour la fabrication d’électrodes enzymatiques en vue d’une utilisation dans des biocapteurs ou des microsystèmes. L’utilisation du système glucose oxydase/glucose dans une pile à combustible aqueuse dont la cathode est en acier inoxydable, permet d’améliorer les performances de la pile grâce à la production du peroxyde d'hydrogène qui est très facile à réduire. En outre, l’utilisation de matériaux avec des microstructures comme les aciers grenaillés mériterait d’être approfondie pour exploiter la remarquable réactivité qu’ils présentent par rapport aux électrodes lisses. ABSTRACT : Microbially influenced corrosion or biocorrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in biocorrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in biocorrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside biofilms could play a major role in steel biocorrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation ...). In addition, phosphates allow the production of hydrogen by electrolysis in mild pH conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase/glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with microstructured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes

    Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC)

    Get PDF
    Microbial electrolysis cells (MEC) must work around neutral pH because of microbial catalysis at the anode. To develop a hydrogen evolution cathode that can work at neutral pH remains a major challenge in MEC technology. Voltammetry performed at pH 8.0 on rotating disk electrodes showed that the presence of phosphate species straightforwardly multiplied the current density of hydrogen evolution, through the so-called cathodic deprotonation reaction. The mechanism was stable on stainless steel cathodes whereas it rapidly vanished on platinum. The phosphate/stainless steel system implemented in a 25 L MEC with a marine microbial anode led to hydrogen evolution rates of up to 4.9 L/h/m2 under 0.8 V voltage, which were of the same order than the best performance values reported so far. Keywords: Hydrogen; Microbial electrolysis cell (MEC); Stainless steel; Phosphat

    Dispositif d’électrolyse de l’eau et son utilisation pour produire de l’hydrogène

    Get PDF
    Dispositif d’électrolyse destiné à produire de l’hydrogène par réduction de l’eau comprenant un compartiment cathodique, un compartiment anodique, un élément reliant lesdits compartiments et permettant la migration des ions entre eux, le dispositif étant caractérisé en ce que le compartiment cathodique contient au moins un acide faible apte à catalyser la réduction et une solution électrolytique dont le pH est dans la gamme comprise entre 3 et 9

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore