587 research outputs found

    Optimizing Nozzle Travel Time in Proton Therapy

    Get PDF
    Proton therapy is a cancer therapy that is more expensive than classical radiotherapy but that is considered the gold standard in several situations. Since there is also a limited amount of delivering facilities for this techniques, it is fundamental to increase the number of treated patients over time. The objective of this work is to offer an insight on the problem of the optimization of the part of the delivery time of a treatment plan that relates to the movements of the system. We denote it as the Nozzle Travel Time Problem (NTTP), in analogy with the Leaf Travel Time Problem (LTTP) in classical radiotherapy. In particular this work: (i) describes a mathematical model for the delivery system and formalize the optimization problem for finding the optimal sequence of movements of the system (nozzle and bed) that satisfies the covering of the prescribed irradiation directions; (ii) provides an optimization pipeline that solves the problem for instances with an amount of irradiation directions much greater than those usually employed in the clinical practice; (iii) reports preliminary results about the effects of employing two different resolution strategies within the aforementioned pipeline, that rely on an exact Traveling Salesman Problem (TSP) solver, Concorde, and an efficient Vehicle Routing Problem (VRP) heuristic, VROOM

    Bridging flavour violation and leptogenesis in SU(3) family models

    Full text link
    We reconsider basic, in the sense of minimal field content, Pati-Salam x SU(3) family models which make use of the Type I see-saw mechanism to reproduce the observed mixing and mass spectrum in the neutrino sector. The goal of this is to achieve the observed baryon asymmetry through the thermal decay of the lightest right-handed neutrino and at the same time to be consistent with the expected experimental lepton flavour violation sensitivity. This kind of models have been previously considered but it was not possible to achieve a compatibility among all of the ingredients mentioned above. We describe then how different SU(3) messengers, the heavy fields that decouple and produce the right form of the Yukawa couplings together with the scalars breaking the SU(3) symmetry, can lead to different Yukawa couplings. This in turn implies different consequences for flavour violation couplings and conditions for realizing the right amount of baryon asymmetry through the decay of the lightest right-handed neutrino. Also a highlight of the present work is a new fit of the Yukawa textures traditionally embedded in SU(3) family models.Comment: 26 pages, 5 figures, Some typos correcte

    The search for transient astrophysical neutrino emission with IceCube-DeepCore

    Get PDF
    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae

    Risks of Ventricular Arrhythmia and Heart Failure in Carriers of RBM20 Variants

    Get PDF
    BACKGROUND: Variants in RBM20 are reported in 2% to 6% of familial cases of dilated cardiomyopathy and may be associated with fatal ventricular arrhythmia and rapid heart failure progression. We sought to determine the risk of adverse events in RBM20 variant carriers and the impact of sex on outcomes. METHODS: Consecutive probands and relatives carrying RBM20 variants were retrospectively recruited from 12 cardiomyopathy units. The primary end point was a composite of malignant ventricular arrhythmia (MVA) and end-stage heart failure (ESHF). MVA and ESHF end points were also analyzed separately and males and females compared. Left ventricular ejection fraction (LVEF) contemporary to MVA was examined. RBM20 variant carriers with left ventricular systolic dysfunction (RBM20LVSD) were compared with variant-elusive patients with idiopathic left ventricular systolic dysfunction. RESULTS: Longitudinal follow-up data were available for 143 RBM20 variant carriers (71 male; median age, 35.5 years); 7 of 143 had an MVA event at baseline. Thirty of 136 without baseline MVA (22.0%) reached the primary end point, and 16 of 136 (11.8%) had new MVA with no significant difference between males and females (log-rank P=0.07 and P=0.98, respectively). Twenty of 143 (14.0%) developed ESHF (17 males and 3 females; log-rank P35%. At 5 years, 15 of 67 (22.4%) RBM20LVSD versus 7 of 197 (3.6%) patients with idiopathic left ventricular systolic dysfunction had reached the primary end point (log-rank P<0.001). RBM20 variant carriage conferred a 6.0-fold increase in risk of the primary end point. CONCLUSIONS: RBM20 variants are associated with a high risk of MVA and ESHF compared with idiopathic left ventricular systolic dysfunction. The risk of MVA in male and female RBM20 variant carriers is similar, but male sex is strongly associated with ESHF

    Measurement of Lifetime and Decay-Width Difference in B0s -> J/psi phi Decays

    Get PDF
    We measure the mean lifetime, tau=2/(Gamma_L+Gamma_H), and the width difference, DeltaGamma=Gamma_L-Gamma_H, of the light and heavy mass eigenstates of the B0s meson, B0sL and B0sH, in B0s -> J/psi phi decays using 1.7 fb^-1 of data collected with the CDF II detector at the Fermilab Tevatron ppbar collider. Assuming CP conservation, a good approximation for the B0s system in the Standard Model, we obtain DeltaGamma = 0.076^+0.059_-0.063 (stat.) +- 0.006 (syst.) ps^-1 and tau = 1.52 +- 0.04 (stat.) +- 0.02 (syst.) ps, the most precise measurements to date. Our constraints on the weak phase and DeltaGamma are consistent with CP conservation. Dedicated to the memory of our dear friend and colleague, Michael P. Schmid

    Limits on Anomalous Triple Gauge Couplings in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present a search for anomalous triple gauge couplings (ATGC) in WW and WZ boson production. The boson pairs are produced in ppbar collisions at sqrt{s}=1.96 TeV, and the data sample corresponds to 350 pb-1 of integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. In this search one W decays to leptons, and the other boson (W or Z) decays hadronically. Combining with a previously published CDF measurement of Wgamma boson production yields ATGC limits of -0.18 < lambda < 0.17 and -0.46 < Delta kappa < 0.39 at the 95% confidence level, using a cut-off scale Lambda=1.5 TeV.Comment: 7 pages, 3 figures. Submitted to Phys. Rev.

    Search for the standard model Higgs boson at LEP

    Get PDF

    Search for Pair Production of Scalar Top Quarks Decaying to a tau Lepton and a b Quark in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We search for pair production of supersymmetric top quarks (~t_1), followed by R-parity violating decay ~t_1 -> tau b with a branching ratio beta, using 322 pb^-1 of ppbar collisions at sqrt{s}=1.96 TeV collected by the CDF II detector at Fermilab. Two candidate events pass our final selection criteria, consistent with the standard model expectation. We set upper limits on the cross section sigma(~t_1 ~tbar_1)*beta^2 as a function of the stop mass m(~t_1). Assuming beta=1, we set a 95% confidence level limit m(~t_1)>153 GeV/c^2. The limits are also applicable to the case of a third generation scalar leptoquark (LQ_3) decaying LQ_3 -> tau b.Comment: 7 pages, 2 eps figure

    Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    Get PDF
    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.
    corecore