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Abstract—Proton therapy is a cancer therapy that is more
expensive than classical radiotherapy but that is considered
the gold standard in several situations. Since there is also a
limited amount of delivering facilities for this techniques, it is
fundamental to increase the number of treated patients over time.
The objective of this work is to offer an insight on the problem
of the optimization of the part of the delivery time of a treatment
plan that relates to the movements of the system. We denote it
as the Nozzle Travel Time Problem (NTTP), in analogy with the
Leaf Travel Time Problem (LTTP) in classical radiotherapy.

In particular this work: (i) describes a mathematical model for
the delivery system and formalize the optimization problem for
finding the optimal sequence of movements of the system (nozzle
and bed) that satisfies the covering of the prescribed irradiation
directions; (ii) provides an optimization pipeline that solves the
problem for instances with an amount of irradiation directions
much greater than those usually employed in the clinical practice;
(iii) reports preliminary results about the effects of employing
two different resolution strategies within the aforementioned
pipeline, that rely on an exact Traveling Salesman Problem (TSP)
solver, Concorde, and an efficient Vehicle Routing Problem (VRP)
heuristic, VROOM.

Index Terms—Proton Therapy, Delivery Time Optimization,
Generalized Traveling Salesman Problem.

I. INTRODUCTION

Proton therapy uses accelerated particle beams of protons to
treat and eliminate various forms of cancer. Unlike x-rays and
electron beams which, in classical radiotherapy, release energy
along the entire path through the patient’s body, the beams
used in proton therapy have a characteristic depth/dose profile
that allows to concentrate the maximum of the energy at a
precise depth position, called Bragg Peak [1]. For this reason,
proton therapy allows to obtain the maximum biological effect
near the tumor mass or, in general, in the target volume
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established by the medical team, while minimizing the damage
caused to the surrounding healthy tissues [2].

The treatment planning is the process that analyses and
selects the particle beams that can bring the most benefit
to the therapy, i.e. those that are compliant with the dose
requirements of the target and preserve as much as possible the
healthy surrounding tissues and organs at risk. It starts from
diagnostic information, e.g. the results of magnetic resonance
and CT, and produce a treatment plan, i.e. in a set of beams,
each with its own orientation, energy and fluence.

In order to deliver the therapy, a particle production equip-
ment, the cyclotron, and a beam transport and release system
are required. The typical delivery front-end structure in the
case of Intensity Modulated Proton Therapy (IMPT) is com-
posed by a nozzle, from which the beams are irradiated, that
is placed in a rotating gantry structure. During the treatment,
the patient is immobilized on a bed inside the gantry room,
thus allowing the beams to be directed by rotating the nozzle
around the patient. The bed itself can rotate around the vertical
axis, perform rolling and pitching movements and translations
along the three orthogonal axes. These movements are critical,
in order to obtain the correct relative positioning of the patient
with respect to the nozzle during the treatment: positions must
be reproducible with extreme accuracy in order to fully exploit
the precision of the proton beams and achieve the expected
result of the therapeutic treatment plan [3].

The delivery system is particularly sophisticated and expen-
sive, as well as slow in its movements: consequently the cost
of a treatment with protons is higher than the cost of a normal
classic radiotherapy irradiation [2]. Completing as much as
possible daily treatments is therefore essential to reduce the
average costs of therapies with protons and make them more
easily accessible to a greater number of patients [4].

The treatment planning presents several computational bot-
tlenecks, such as the accurate computation of beams dose
profiles [5], [6] and the development of treatments including
the set of irradiation directions, called fields (or angles) and



fluences, that provide the best outcome for patients [7], [8].
The objective of this work is to address the minimization of

the delivery time of a treatment plan once that the set of fields
is fixed. In our optimization problem we say that the fields
in above set have to be “covered”, and we call our problem
the Nozzle Travel Time Problem (NTTP), in analogy with the
Leaf Travel Time Problem (LTTP) in classical radiotherapy.
Notice that inside the NTTP the bed movements are taken
into account.

To this aim, an optimization pipeline for solving NTTP
instances is proposed. It has been designed to be modular, in
the sense that, once the problem instance is pre-processed and
the set of configurations that the delivery system can assume to
fulfill the requirements is defined, multiple exact and heuristic
strategies can be followed to solve it. This work offers a
comparison of performances, both in terms of computational
time and accuracy of the solution, between two methods: an
exact Traveling Salesman Problem solver (Concorde) and an
efficient heuristic Vehicle Routing Open-source Optimization
Machine (VROOM).

The manuscript is organized as follows: Section II sum-
marizes related work; Section III described the NTTP and
provides a formal representation of the delivery system and
of the NTTP instances needed for further steps; Section IV
concerns the implementation of the solvers and the simulation
results; finally, Section V illustrates conclusions and future
developments.

II. RELATED WORK

The problems described in this work are related to Traveling
Salesman Problem (TSP) and its variants. TSP is a very well
known optimization problem: given a set of m cities, with
integer distance d(ci, cj) between each pair of cities (ci, cj),
find a Hamiltonian cycle of minimum total distance. TSP has
been proven to be NPO-complete [9] and the decision version
of the problem is NP-complete [10].

In particular NTTP is a special case of the Equality
Generalized TSP (E-GTSP), that is, in turn, a variant of
Generalized TSP (GTSP), also known as International TSP
or Travelling Politician Problem. GTSP was first introduced
by Henry-Labordere in 1969 [11]. Given a weighted complete
directed graph G = (V,A) and a partition V1, . . . , Vk of its
vertices, GTSP asks for a minimum weight cycle containing a
vertex from each set [12]. The “Equality” variant imposes that
each cluster is visited exactly once. Obviously, being TSP a
particular case of E-GTSP, where each cluster is a singleton,
E-GTSP is at least hard as TSP. More precisely, in NTTP,
since all the distances that are taken in account preserve the
triangle inequality, there is no difference between the general
an the equality version of the problem. A natural approach to
deal with GTSP/E-GTSP problems is to reduce it to TSP [13],
[12], [14], [15], since scholars put a large effort in developing
exact and heuristic algorithms for TSP [16].

From the application point of view, the problem of op-
timizing the treatment delivery time is strictly related with
the Robotic Task Sequencing Problem (RTSP), i.e. optimizing

the sequence of movements that a manufacturing robot (e.g.
a welding machinery) has to perform to accomplish a task
[17], [18]. In particular, the task space (or T-space) that
describes position and orientation of the end-effector in RTSP,
is a generalization of the concept of “field” described here:
the irradiation direction toward the patient’s body. In the
same way, the configuration space (or C-space), i.e. the set
of possible joints position of the robot, corresponds to the
configurations described here.

NTTP is related with LTTP in classical radiotherapy, where
dose optimization routines generate the intensity maps, that
could be delivered with different techniques. Conceptually the
IMPT delivery method considered here is analogous to the
“step-and-hoot” method considered in classical radiotherapy.
For further details the reader can refer to [19], [20] and
references therein.

III. THE NTTP PROBLEM

In order to address the NTTP definition, a formal description
of the delivery system has to be provided. Consider, in a
3-dimensional Cartesian coordinate system with origin O, a
delivery system for proton therapy consisting of:

• a circumference, henceforth simply called “ring” (R), of
radius r, centered in the origin and lying in the XY plane,
representing the gantry structure around which the nozzle,
N , rotates: let be Pring the XY plane itself;

• a bed, B, represented by a rectangle lying in the XZ
plane (Pbed) that can translate in along X and Z axes
and rotate around an axis Ybed (parallel to Y ) and passing
for Obed, the Center of Gravity (COG) of B. On B, the
midpoint of the shorter side closest to the patient’s head
is denoted by H .

Fig. 1. Geometric representation of the delivery system

Figure 1 shows the aforementioned components. In order
to simplify, only bed rotations around gravity (Ybed) are
considered. This constraint also reflects the clinical practice,
since internal organs and soft tissue geometry have to be
preserved. Each position of the nozzle corresponds to a radius
of R and identifies the direction of the proton beam. The
reciprocal positions of the nozzle and the bed identify a “field”,



i.e. the direction of the beam toward the patient’s body. Let a
configuration represent a specific position of the system by a
quadruple c = (α, tz, tx, β), where:

• α is the angle, expressed in radians, formed by Y and
the half line with origin in O and passing for N , i.e. the
position of the nozzle with respect to the apex of R;

• tx and tz are the X and Z coordinates of Obed, expressed
in meters;

• β is the angle, expressed in radians, of rotation of B
around Ybed, that is, β is the angle formed by:

– the vector with origin in Obed and same direction
and sense of Z;

– the half line with same origin and passing for H .
The reference configuration c0 = (0, 0, 0, 0), i.e. with N =
(0, r, 0), Obed = O and H on the positive side of Z, is the
initial position of the system. System features describe the
physical constraints of the delivery hardware, e.g. there are
systems that limit the nozzle allowed rotation around R, and
the movement speed of the components. System features can
be formalized by the tuple

SF = (αrng, ωα, txrng, vx, tzrng, vz, βrng, ωβ),
where:
• αrng = (αmin, αmax) represents the feasible positions of

N (rad);
• ωα is the angular velocity of N (rad/s);
• txrng = (txmin, txmax) and tzrng = (tzmin, tzmax)

indicate the positions Obed can assume (m);
• vx and vz are the linear velocity of Obed along X and

Z, respectively (m/s);
• βrng = (βmin, βmax) indicates which rotations the bed

can perform (rad);
• ωβ is the angular velocity of H around Ybed (rad/s).
Given the system features, for any pair of configurations

(c1, c2), it is possible to compute the distance ∆(c1, c2) =
∆(c2, c1) that represents the time needed by the system to
move from c1 to c2 or vice-versa. This metric is, in turn,
function of:

• δα(c1, c2) = ωαmin(|αc1 − αc2 |, |2π − αc1 − αc2 |)
• δtx(c1, c2) = vx|txc1 − txc2 |
• δtz(c1, c2) = vz|tzc1 − tzc2 |
• δβ(c1, c2) = ωβmin(|βc1 − βc2 |, |2π − βc1 − βc2 |)

that are the time needed to align each element of the con-
figurations: nozzle position, bed X and Z translations and
bed rotation (for simplicity, the configurations arguments of
the functions have been omitted). If the system constraints
allow to move multiple components at the same time, then
∆(c1, c2) = max(δα, δtx, δtz, δβ) (L∞ norm), otherwise, if
only one component at time can be moved, then ∆(c1, c2) =
δα + δtx + δtz + δβ (L1 norm).

For the proposed application, it is convenient to model a
second coordinates system, integral with B, with origin in
Obed and axes corresponding to X , Y and Z when the system
is in the reference configuration. Now therefore, a field can
be described by the pair (V, T ), with V and T free vectors.
Specifically, the irradiation direction can be represented by

applying the translation T (in the bed coordinates system) to
V , initially with its tail in Obed. The previous definition is
suitable with a “patient-centric” field description, since it is
independent from the system features and configuration and
depends only on the position of the patient on the bed. We
say that a configuration c = (α, tx, tz, β) “covers” a field f ,
i.e. c allows to irradiate along the direction indicated by f , if,
rotating B by −β around Ybed, translating it by (−tx, 0,−tz)
and, finally, rotating it by −α around Z, f has its start point
on O and has the same direction and sense of vector (0,−1, 0)
in the original coordinates system. It is to note that the last ro-
tation corresponds to the rotation by the angle α of the nozzle.
Consistently with the delivery system features, a maximum of
two configurations cover the same field: if c1 = (α, tx, tz, β)
cover f , also c2 = (−α,−tx,−tz, β + π) does. A pair of
configurations such c1 and c2 will be henceforth called twin
configurations: this property of the delivery system has a key
role in the problem definition, since, given a set of fields, at
least one of the configurations covering each of them has to
be assumed by the system.

A. Problem Description

NTTP consists in the following problem: given a set of
distinct fields F = {f1, f2, ..., fn} and the system features
SF = (αrng, ωα, txrng, vx, tzrng, vz, βrng, ωβ), find a se-
quence of configurations C∗ = (c1, ..., cn) that covers each
field and minimize T = ∆(cn, c1) +

∑n
i=1 ∆(ci−1, ci), i.e.

the time needed to visit the whole sequence and return in c1.
Notice that, as usually assumed in proton therapy, the order

in which the fields are covered is not relevant for the final
outcome of the treatment.

NTTP can be formulated as follows: given F =
{f1, f2, ..., fn}, construct a complete undirected graph G =
(V,E) where vertices in V correspond to the set C of all
configurations that cover a field in F and assign weight
wij = ∆(ci, cj) to each (i, j) ∈ E. Let C =

⋃n
s=1 Ks, where

Ks is the subset of configurations covering fs (depending
on fs orientation and the system features, there could be a
single configuration ore two twins configurations in Ks). Thus,
NTTP asks for a cycle Γ of minimum weight in G, such that
it visits exactly one configuration for each Ki. In [21] it is
proved that NTTP is hard to solve but due to space constrains
we cannot report the proof here.

IV. OPTIMIZATION PIPELINE FOR NTTP

In order to solve instances for the NTTP, the pipeline
depicted in Figure 2 has been followed. The proposed method
takes in input the characteristics of the delivery system and
the prescribed set of fields that have to be covered and finds
an optimal sequence of configurations such that each field is
covered by exactly one configuration. In the first part, the field
set is processed in order to build the graph G = (V,E). At
this point the NTTP, that, as remark, is a special case of
GTSP, can be transformed in an Asymmetric TSP (ATSP)
instance by applying the algorithm proposed by Noon and



Bean [22]. Then, alternative approaches can be followed. Here
we implemented and tested the following:

• consider ATSP as a special (simpler) case of Vehicle
Routing Problem (VRP). Here, the VROOM engine1 is
employed as heuristic approach;

• reformulate ATSP as TSP, thanks to the construction
proposed by Jonker and Volgenant [23]. In this work,
TSP instances have been solved by using the best known
TSP solver, Concorde2.

System Features Prescribed Fields

Configurations Identification

G(V,E)GTSP/ATSP Conversion

VROOM Engine

Heuristic Solution

ATSP ATSP/TSP 
Conversion TSP

Concorde Solver

Optimal Solution

Fig. 2. Solving pipeline for NTTP

A. Identification of Configurations

As first step, the fields have to be translated in configu-
rations. Specifically, let f = (V, T ) be the considered field:
first the angles β1 and β2 = β1 + π are computed (if exist)
such that the rotations around Y rotY β1

and rotY β2
, applied

to V , produce vectors V1 and V2 parallel to Pring . In the
same way, the angles α1 and α2, if exist, are computed,
such that V3 = rotZα1(V1) and V4 = rotZα2(V2) have
the same direction and sense of vector (0,−1, 0). Finally,
T1 = rotY β1

and T2 = rotY β2
= −T1 are computed

and the configurations c1 = (−α1,−T1(Z),−T1(X), β1) and
c2 = (−α2,−T2(Z),−T2(X), β2) are composed, where T(X)

and T(Z) represent the X and Z components of vector T . The
starting configuration c0 = (0, 0, 0, 0) is added to the instance,
since the system is expected to start and stop in this position.

In this phase, the distance between each pair of configura-
tion ∆(c1, c2) = ∆(c2, c1) is also computed, in order to assign
weights to all edges in E.

By considering a small toy-example, given the following
system features:
betamin: [-3.14], betamax: [3.14], txmin: -1, txmax: 1,
tzmin: -1.5, tzmax: 1.5, alphamin: [-1.57], alphamax: [3.14],
omegalpha: 0.11, omegabeta: 0.21, v_x: 0.06, v_z: 0.06

and the set of prescribed fields:
V:[ 0.58, 0.66, -0.47], T:[-0.68, 0., 0.50]
V:[-0.37, 0.58, 0.73], T:[-0.45, 0., -0.37]
V:[-0.46, -0.49, 0.74], T:[-0.17, 0., 0.62]

the system computes the following set of configurations:
(0, 1): [0, 0, 0, 0], (1, 1): [2.29, 0.04, 0.84, -0.68]
(2, 1): [2.18, -0.57, 0.12, 2.04],

1https://github.com/VROOM-Project/vroom
2https://www.math.uwaterloo.ca/tsp/concorde.html

(3, 1): [-1.06, -0.19, 0.62, -1.01],
(3, 2): [1.06, 0.19, -0.62, 2.13],

that represents a graph composed by 4 clusters, one of
which includes 2 twin configurations. Note that values are
reported after rounding to help readability. Angle ranges for
bed and nozzle are represented as lists (in this case with a
single elements) because the system is designed to work with
angles represented in the range [−π, π), thus some intervals
have to be described with two ranges, also if continuous. In
the proposed example, by assuming the distance computed as
L∞ norm, the system produces the following distance matrix:
[[0., 21.84, 20.80, 10.33, 10.33]
[21.84, 0. 13.01, 31.90, 24.39]
[20.80, 13.01, 0., 30.86, 12.60]
[10.33, 31.90, 30.86, 0., 20.66]
[10.33, 24.39, 12.60, 20.66, 0. ]]

B. GTSP to ATSP conversion

The transformation follows the approach by Noon and Bean
[22]. Let G(V,E) be the graph representing the instance, with
distance matrix c, the algorithm produces a new matrix c′,
maintaining the original vertex set by (i) picking an arbitrary
tour between vertex of each cluster and set c′i,j = 0 if j follows
i in the tour; (ii) setting c′i,j = M + ck,j , where k is the
vertex following i in the in-cluster tour and M is a constant
larger than the sum of the |V | largest distances; (iii) set any
other c′i,j to 2M . The algorithm produce a ATSP equivalent
instance, in the sense that the optimal solution can be retrieved
by choosing the first vertex visited in each cluster and the
minimum distance d∗ can be computed from the obtained cost
d′∗ as d∗ = d′∗−nM (with n being the number of clusters). In
the proposed pipeline, M is computed as |V | ∗m, where m is
the larger weight between edges (in this case M = 5 ∗ 31.9 =
159.5). Therefore, by considering the previous example, the
new distance matrix is:
[[0., 181.34, 180.30, 169.83, 169.83]
[181.34, 0., 172.51, 191.40, 183.89]
[180.30, 172.51, 0., 190.36, 172.10]
[169.83, 183.89, 172.10, 0., 0. ]
[169.83, 191.40, 190.36, 0., 0. ]]

It is to note the presence in the distance matrix of the
subtour of cost 0 in the cluster with two nodes, induced by
the GTSP-ATSP conversion and the asymmetry that arises in
presence of cluster with two configurations.

C. VROOM solver

VROOM is an open-source optimization engine designed
for solving instances of VRP, that is a generalization of
ATSP, thus it can be used to solve the problem in the current
asymmetric form. VROOM is implemented in C++ and can
be fed with json input file. Here, the ATSP is formalized as
a VRP with just one vehicle, that must start and return in a
single depot and visit all the customers. The following json
code represents an example of how the input for VROOM is
prepared, starting from the data considered in the toy example.
The first job is the starting configuration c0. In order to feed
VROOM with integer values, the weights have been casted



after a multiplication by 10, meaning that the system has a
precision of 0.1 seconds.
{’matrices’: {’car’: {’durations’:
[[0, 1813, 1803, 1698, 1698],
[1813, 0, 1725, 1914, 1839],
[1803, 1725, 0, 1907, 1721],
[1698, 1839, 1721, 0, 0],
[1698, 1914, 1904, 0, 0]] } },

’vehicles’: [{’id’: 0, ’start_index’: 0,
’end_index’: 0}],

’jobs’: [ {’id’: 0, ’location_index’: 0},
{’id’: 1, ’location_index’: 1},
{’id’: 2, ’location_index’: 2},
{’id’: 3, ’location_index’: 3},
{’id’: 4, ’location_index’: 4} ]}

D. ATSP to TSP conversion

In this step, the transformation proposed by Jonker and
Volgenant [23] is applied. It reformulates ATSP to TSP by
creating a dummy duplicate of each vertex i ∈ V . From the
original complete directed graph, a complete undirected one
with 2|V | vertices is obtained by (i) setting to 0 the cost of the
edge (i, |V | + i) for each i ∈ V ; (ii) assign the cost cij + B
to edge (|V |+ i, j) ∀i, j ∈ V (where B is a sufficiently large
positive value); (iii) setting to +∞ the cost of any other edge
[24]. The set of optimal solutions contains for sure a tour in
the form i1 → i1+|V | → i2 → i2+|V | → ... → i|V | → i2|V |.
The solution for the original problem can be retrieved from
this tour by removing nodes with indices greater than |V |.
Similarly, the optimal cost of the original problem can be
retrieved by subtracting |V | ∗B from the obtained one.

E. Concorde Solver

In the proposed pipeline the solving of TSP instances has
been managed by using Concorde. Concorde is a computer
code for the symmetric TSP and some related network opti-
mization problems, written in C. Here, the executable version
of the solver for linux, in conjunction with QSopt linear
programming solver 3, has been employed. In particular, B
is chosen as 2M and the value +∞ is replaced by 4M . As
for VROOM, values are casted to integer after being multiplied
by 10 to be computed by Concorde.

In the following, it is possible to see the instance obtained
from the previous steps for the considered example, written
following the TSPLIB 4 format.
NAME: NTTP2TSP
TYPE: TSP
COMMENT: conversion from ATSP to TSP
DIMENSION: 10
EDGE_WEIGHT_TYPE: EXPLICIT
EDGE_WEIGHT_FORMAT: FULL_MATRIX
EDGE_WEIGHT_SECTION
6380 6380 6380 6380 6380 0 5003 4993 4888 4888
6380 6380 6380 6380 6380 5003 0 4915 5029 5104
6380 6380 6380 6380 6380 4993 4915 0 4911 5094
6380 6380 6380 6380 6380 4888 5104 5094 0 3190
6380 6380 6380 6380 6380 4888 5029 4911 3190 0
0 5003 4993 4888 4888 6380 6380 6380 6380 6380
5003 0 4915 5104 5029 6380 6380 6380 6380 6380
4993 4915 0 5094 4911 6380 6380 6380 6380 6380
4888 5029 4911 0 3190 6380 6380 6380 6380 6380
4888 5104 5094 3190 0 6380 6380 6380 6380 6380
EOF

3https://www.math.uwaterloo.ca/ bico/qsopt/
4http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

F. Simulations

The proposed pipeline has been tested by considering com-
mon system features and a variable amount of randomly gen-
erated prescribed fields, by employing Concorde and VROOM
as solvers. Simulations have been conducted on a desktop PC
(HP® Omen 30L) with a AMDTM Ryzen 9 5900x processor,
32 GB of memory, running Python 3.8.10 over Ubuntu 20.04.4
LTS operating system. Simulations take into account three
feature sets, namely SF1, SF2 and SF3, that share all the
parameters (ωα = 0.105 rad/s, txrng = [−1.0, 1.0] m,
tzrng = [−1.5, 1.5] m, vx = vz = 0.06 m/s, βrng = [−π, π)
rad, ωβ = 0.209 rad/s), but differ with regards to the
allowed position of the nozzle, αrng ([−π, π), [−pi/2, π)
and [0, π] rad, respectively). For each feature set, 5 to 100
(step 5) prescribed fields has been simulated 100 times both
using Concorde and VROOM and, for each simulation, the
required computation time has been evaluated. Moreover, each
simulation has been performed twice, in order to take into
account both L∞ and L1 norms as distances. Results show
differences induced by different system features: since SF2
and SF3, starting from the same amount of required fields,
allow less configurations than SF1, their instances are easier
to solve and, thus, computation time is lower. However, all
the accounted combination of system feature and metric share
the same trend in the results. Here, as representative example,
the results obtained with SF1 and L∞ norm are reported
and discussed. All the considered instances, together with
solutions obtained by both solvers and the source code, are
available on an online repository5. Figure 3 reports the average
computation time over the number of prescribed fields both for
Concorde and VROOM. Both approaches demonstrated to be
largely capable to manage an amount of fields much greater
than those usually employed in clinical practice. As it is
possible to observe, VROOM showed an average computation
time several orders of magnitude lower than Concorde (0.01
seconds versus 29.62 seconds for 100 fields), confirming its
efficiency in addressing VRP instances. Moreover, it shows a
linear trend in the solving time, suggesting that it would be
capable to manage also bigger instances of NTTP. However,
being VROOM an heuristic, the provided result are rarely
optimal, especially with the increase of prescribed fields. On
the other hand, result obtained by VROOM are quite close to
the optimum: Figure 3 also shows the estimated travel time
computed by Concorde and VROOM and the relative error of
the heuristic with respect to the exact solution (expressed in
percentage). Here it is possible to observe that the curve draws
a plateau between 7% and 8% after 70 fields, suggesting an
asymptotic behavior even for larger instances.

V. CONCLUSION

In this work, we addressed the problem of minimizing the
nozzle travel time in proton therapy, on one hand by proposing
a formalization of NTTP and, on the other hand, by providing
a modular pipeline to solve the problem. Obtained results show

5https://doi.org/10.5281/zenodo.6686176



Fig. 3. Simulation results for SF1 and L∞ norm distance. From top to
bottom: average optimization time over the number of prescribed fields for
Concorde (i) and VROOM (ii), computed nozzle travel time for both solvers
(iii), relative distance from optimum achieved by VROOM (iv).

that both the exact and the heuristic approaches are capable
to solve instances with a large number of fields, with respect
to those usually employed in actual proton therapy treatment
plans. In particular, the heuristic solver based on VROOM has
shown to be very effective in terms of computation time, at
cost of a little increment of the obtained travel time. Even if
the gain in terms of computational time could be negligible
when applied to Intensity Modulated Proton Therapy, where
the amount of prescribed fields is in general low and the exact
solver can efficiently solve the problem, it represents a quite
promising advantage if applied to more recent techniques such
as Proton Arc Therapy (PAT) [25], where the radiation is
continuously on during the movement of the gantry and the
complexity of the problem increases.

Future developments will include a theoretical perspective
on the complexity of NTTP as well as the development and
the test of alternative solving strategy to be included in the
pipeline.
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